Find a file
2023-08-10 18:56:26 -07:00
.circleci temp test chromadb 2023-08-10 15:22:38 -07:00
cookbook Rename Untitled155.ipynb to litellm_test_multiple_llm_demo.ipynb 2023-08-10 18:56:26 -07:00
docs doc cleanup 2023-08-09 19:16:55 -07:00
litellm allowing dynamic api base to be set for openai 2023-08-10 18:40:35 -07:00
test-results Create t1.txt 2023-08-01 15:39:19 -07:00
.DS_Store add import for co, anth 2023-08-08 10:46:20 -07:00
.env.example Expanded .env, added Poetry and basic Docstring 2023-08-02 12:05:35 +03:00
.gitignore updating crash monitoring 2023-08-10 11:13:30 -07:00
.readthedocs.yaml Update .readthedocs.yaml 2023-07-29 12:54:38 -07:00
LICENSE Initial commit 2023-07-26 17:09:52 -07:00
mkdocs.yml add token usage 2023-08-08 21:11:06 -07:00
poetry.lock Added Openrouter support back 2023-08-08 08:22:03 +03:00
pyproject.toml allowing dynamic api base to be set for openai 2023-08-10 18:40:35 -07:00
README.md Update README.md 2023-08-09 06:17:08 -07:00

🚅 litellm

PyPI Version PyPI Version CircleCI Downloads litellm

a light package to simplify calling OpenAI, Azure, Cohere, Anthropic, Huggingface API Endpoints. It manages:

  • translating inputs to the provider's completion and embedding endpoints
  • guarantees consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • exception mapping - common exceptions across providers are mapped to the OpenAI exception types

usage

Demo - https://litellm.ai/
Read the docs - https://litellm.readthedocs.io/en/latest/

quick start

pip install litellm
from litellm import completion

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion("command-nightly", messages)

# azure openai call
response = completion("chatgpt-test", messages, azure=True)

# hugging face call
response = completion(model="stabilityai/stablecode-completion-alpha-3b-4k", messages=messages, hugging_face=True)

# openrouter call
response = completion("google/palm-2-codechat-bison", messages)

Code Sample: Getting Started Notebook

Stable version

pip install litellm==0.1.345

Streaming Queries

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response. Streaming is supported for OpenAI, Azure, Anthropic models

response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
    print(chunk['choices'][0]['delta'])

# claude 2
result = completion('claude-2', messages, stream=True)
for chunk in result:
  print(chunk['choices'][0]['delta'])

support / talk with founders

why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI, Cohere