mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
700 lines
24 KiB
Python
700 lines
24 KiB
Python
#### What this tests ####
|
|
# This tests streaming for the completion endpoint
|
|
|
|
import sys, os, asyncio
|
|
import traceback
|
|
import time, pytest
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import litellm
|
|
from litellm import completion, acompletion
|
|
|
|
litellm.logging = False
|
|
litellm.set_verbose = False
|
|
|
|
score = 0
|
|
|
|
|
|
def logger_fn(model_call_object: dict):
|
|
print(f"model call details: {model_call_object}")
|
|
|
|
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
|
|
|
|
first_openai_chunk_example = {
|
|
"id": "chatcmpl-7zSKLBVXnX9dwgRuDYVqVVDsgh2yp",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694881253,
|
|
"model": "gpt-4-0613",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"content": ""
|
|
},
|
|
"finish_reason": None # it's null
|
|
}
|
|
]
|
|
}
|
|
|
|
def validate_first_format(chunk):
|
|
# write a test to make sure chunk follows the same format as first_openai_chunk_example
|
|
assert isinstance(chunk, dict), "Chunk should be a dictionary."
|
|
assert "id" in chunk, "Chunk should have an 'id'."
|
|
assert isinstance(chunk['id'], str), "'id' should be a string."
|
|
|
|
assert "object" in chunk, "Chunk should have an 'object'."
|
|
assert isinstance(chunk['object'], str), "'object' should be a string."
|
|
|
|
assert "created" in chunk, "Chunk should have a 'created'."
|
|
assert isinstance(chunk['created'], int), "'created' should be an integer."
|
|
|
|
assert "model" in chunk, "Chunk should have a 'model'."
|
|
assert isinstance(chunk['model'], str), "'model' should be a string."
|
|
|
|
assert "choices" in chunk, "Chunk should have 'choices'."
|
|
assert isinstance(chunk['choices'], list), "'choices' should be a list."
|
|
|
|
for choice in chunk['choices']:
|
|
assert isinstance(choice, dict), "Each choice should be a dictionary."
|
|
|
|
assert "index" in choice, "Each choice should have 'index'."
|
|
assert isinstance(choice['index'], int), "'index' should be an integer."
|
|
|
|
assert "delta" in choice, "Each choice should have 'delta'."
|
|
assert isinstance(choice['delta'], dict), "'delta' should be a dictionary."
|
|
|
|
assert "role" in choice['delta'], "'delta' should have a 'role'."
|
|
assert isinstance(choice['delta']['role'], str), "'role' should be a string."
|
|
|
|
assert "content" in choice['delta'], "'delta' should have 'content'."
|
|
assert isinstance(choice['delta']['content'], str), "'content' should be a string."
|
|
|
|
assert "finish_reason" in choice, "Each choice should have 'finish_reason'."
|
|
assert (choice['finish_reason'] is None) or isinstance(choice['finish_reason'], str), "'finish_reason' should be None or a string."
|
|
|
|
second_openai_chunk_example = {
|
|
"id": "chatcmpl-7zSKLBVXnX9dwgRuDYVqVVDsgh2yp",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694881253,
|
|
"model": "gpt-4-0613",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"content": "Hello"
|
|
},
|
|
"finish_reason": None # it's null
|
|
}
|
|
]
|
|
}
|
|
|
|
def validate_second_format(chunk):
|
|
assert isinstance(chunk, dict), "Chunk should be a dictionary."
|
|
assert "id" in chunk, "Chunk should have an 'id'."
|
|
assert isinstance(chunk['id'], str), "'id' should be a string."
|
|
|
|
assert "object" in chunk, "Chunk should have an 'object'."
|
|
assert isinstance(chunk['object'], str), "'object' should be a string."
|
|
|
|
assert "created" in chunk, "Chunk should have a 'created'."
|
|
assert isinstance(chunk['created'], int), "'created' should be an integer."
|
|
|
|
assert "model" in chunk, "Chunk should have a 'model'."
|
|
assert isinstance(chunk['model'], str), "'model' should be a string."
|
|
|
|
assert "choices" in chunk, "Chunk should have 'choices'."
|
|
assert isinstance(chunk['choices'], list), "'choices' should be a list."
|
|
|
|
for choice in chunk['choices']:
|
|
assert isinstance(choice, dict), "Each choice should be a dictionary."
|
|
|
|
assert "index" in choice, "Each choice should have 'index'."
|
|
assert isinstance(choice['index'], int), "'index' should be an integer."
|
|
|
|
assert "delta" in choice, "Each choice should have 'delta'."
|
|
assert isinstance(choice['delta'], dict), "'delta' should be a dictionary."
|
|
|
|
assert "content" in choice['delta'], "'delta' should have 'content'."
|
|
assert isinstance(choice['delta']['content'], str), "'content' should be a string."
|
|
|
|
assert "finish_reason" in choice, "Each choice should have 'finish_reason'."
|
|
assert (choice['finish_reason'] is None) or isinstance(choice['finish_reason'], str), "'finish_reason' should be None or a string."
|
|
|
|
last_openai_chunk_example = {
|
|
"id": "chatcmpl-7zSKLBVXnX9dwgRuDYVqVVDsgh2yp",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694881253,
|
|
"model": "gpt-4-0613",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {},
|
|
"finish_reason": "stop"
|
|
}
|
|
]
|
|
}
|
|
|
|
def validate_last_format(chunk):
|
|
assert isinstance(chunk, dict), "Chunk should be a dictionary."
|
|
assert "id" in chunk, "Chunk should have an 'id'."
|
|
assert isinstance(chunk['id'], str), "'id' should be a string."
|
|
|
|
assert "object" in chunk, "Chunk should have an 'object'."
|
|
assert isinstance(chunk['object'], str), "'object' should be a string."
|
|
|
|
assert "created" in chunk, "Chunk should have a 'created'."
|
|
assert isinstance(chunk['created'], int), "'created' should be an integer."
|
|
|
|
assert "model" in chunk, "Chunk should have a 'model'."
|
|
assert isinstance(chunk['model'], str), "'model' should be a string."
|
|
|
|
assert "choices" in chunk, "Chunk should have 'choices'."
|
|
assert isinstance(chunk['choices'], list), "'choices' should be a list."
|
|
|
|
for choice in chunk['choices']:
|
|
assert isinstance(choice, dict), "Each choice should be a dictionary."
|
|
|
|
assert "index" in choice, "Each choice should have 'index'."
|
|
assert isinstance(choice['index'], int), "'index' should be an integer."
|
|
|
|
assert "delta" in choice, "Each choice should have 'delta'."
|
|
assert isinstance(choice['delta'], dict), "'delta' should be a dictionary."
|
|
|
|
assert "finish_reason" in choice, "Each choice should have 'finish_reason'."
|
|
assert isinstance(choice['finish_reason'], str), "'finish_reason' should be a string."
|
|
|
|
def streaming_format_tests(idx, chunk):
|
|
extracted_chunk = ""
|
|
finished = False
|
|
print(f"chunk: {chunk}")
|
|
if idx == 0: # ensure role assistant is set
|
|
validate_first_format(chunk=chunk)
|
|
role = chunk["choices"][0]["delta"]["role"]
|
|
assert role == "assistant"
|
|
elif idx == 1: # second chunk
|
|
validate_second_format(chunk=chunk)
|
|
if idx != 0: # ensure no role
|
|
if "role" in chunk["choices"][0]["delta"]:
|
|
raise Exception("role should not exist after first chunk")
|
|
if chunk["choices"][0]["finish_reason"]: # ensure finish reason is only in last chunk
|
|
validate_last_format(chunk=chunk)
|
|
finished = True
|
|
if "content" in chunk["choices"][0]["delta"]:
|
|
extracted_chunk = chunk["choices"][0]["delta"]["content"]
|
|
return extracted_chunk, finished
|
|
|
|
def test_completion_cohere_stream():
|
|
try:
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{
|
|
"role": "user",
|
|
"content": "how does a court case get to the Supreme Court?",
|
|
},
|
|
]
|
|
response = completion(
|
|
model="command-nightly", messages=messages, stream=True, max_tokens=50
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_completion_bedrock_ai21_stream():
|
|
try:
|
|
litellm.set_verbose = False
|
|
response = completion(
|
|
model="bedrock/amazon.titan-tg1-large",
|
|
messages=[{"role": "user", "content": "Be as verbose as possible and give as many details as possible, how does a court case get to the Supreme Court?"}],
|
|
temperature=1,
|
|
max_tokens=4096,
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
print(response)
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_cohere_stream()
|
|
|
|
# test on openai completion call
|
|
def test_openai_text_completion_call():
|
|
try:
|
|
response = completion(
|
|
model="text-davinci-003", messages=messages, stream=True, logger_fn=logger_fn
|
|
)
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
except:
|
|
pytest.fail(f"error occurred: {traceback.format_exc()}")
|
|
|
|
# # test on ai21 completion call
|
|
def ai21_completion_call():
|
|
try:
|
|
response = completion(
|
|
model="j2-ultra", messages=messages, stream=True, logger_fn=logger_fn
|
|
)
|
|
print(f"response: {response}")
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except:
|
|
pytest.fail(f"error occurred: {traceback.format_exc()}")
|
|
|
|
# ai21_completion_call()
|
|
# test on openai completion call
|
|
def test_openai_chat_completion_call():
|
|
try:
|
|
response = completion(
|
|
model="gpt-3.5-turbo", messages=messages, stream=True, logger_fn=logger_fn
|
|
)
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
# print(f'complete_chunk: {complete_response}')
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
# test_openai_chat_completion_call()
|
|
|
|
# # test on together ai completion call - starcoder
|
|
def test_together_ai_completion_call_starcoder():
|
|
try:
|
|
start_time = time.time()
|
|
response = completion(
|
|
model="together_ai/bigcode/starcoder",
|
|
messages=messages,
|
|
logger_fn=logger_fn,
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
print(f"returned response object: {response}")
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if complete_response == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
def test_completion_nlp_cloud_streaming():
|
|
try:
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{
|
|
"role": "user",
|
|
"content": "how does a court case get to the Supreme Court?",
|
|
},
|
|
]
|
|
response = completion(model="dolphin", messages=messages, stream=True, logger_fn=logger_fn)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if complete_response == "":
|
|
raise Exception("Empty response received")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
#### Test Function calling + streaming ####
|
|
|
|
def test_completion_openai_with_functions():
|
|
function1 = [
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
]
|
|
try:
|
|
response = completion(
|
|
model="gpt-3.5-turbo", messages=messages, functions=function1, stream=True
|
|
)
|
|
# Add any assertions here to check the response
|
|
print(response)
|
|
for chunk in response:
|
|
print(chunk)
|
|
if chunk["choices"][0]["finish_reason"] == "stop":
|
|
break
|
|
print(chunk["choices"][0]["finish_reason"])
|
|
print(chunk["choices"][0]["delta"]["content"])
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
#### Test Async streaming ####
|
|
|
|
# # test on ai21 completion call
|
|
async def ai21_async_completion_call():
|
|
try:
|
|
response = completion(
|
|
model="j2-ultra", messages=messages, stream=True, logger_fn=logger_fn
|
|
)
|
|
print(f"response: {response}")
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
# Change for loop to async for loop
|
|
idx = 0
|
|
async for chunk in response:
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
idx += 1
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
# asyncio.run(ai21_async_completion_call())
|
|
|
|
async def completion_call():
|
|
try:
|
|
response = completion(
|
|
model="gpt-3.5-turbo", messages=messages, stream=True, logger_fn=logger_fn
|
|
)
|
|
print(f"response: {response}")
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
# Change for loop to async for loop
|
|
idx = 0
|
|
async for chunk in response:
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
idx += 1
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
# asyncio.run(completion_call())
|
|
|
|
#### Test Function Calling + Streaming ####
|
|
|
|
final_openai_function_call_example = {
|
|
"id": "chatcmpl-7zVNA4sXUftpIg6W8WlntCyeBj2JY",
|
|
"object": "chat.completion",
|
|
"created": 1694892960,
|
|
"model": "gpt-3.5-turbo-0613",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": None,
|
|
"function_call": {
|
|
"name": "get_current_weather",
|
|
"arguments": "{\n \"location\": \"Boston, MA\"\n}"
|
|
}
|
|
},
|
|
"finish_reason": "function_call"
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": 82,
|
|
"completion_tokens": 18,
|
|
"total_tokens": 100
|
|
}
|
|
}
|
|
|
|
function_calling_output_structure = {
|
|
"id": str,
|
|
"object": str,
|
|
"created": int,
|
|
"model": str,
|
|
"choices": [
|
|
{
|
|
"index": int,
|
|
"message": {
|
|
"role": str,
|
|
"content": (type(None), str),
|
|
"function_call": {
|
|
"name": str,
|
|
"arguments": str
|
|
}
|
|
},
|
|
"finish_reason": str
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": int,
|
|
"completion_tokens": int,
|
|
"total_tokens": int
|
|
}
|
|
}
|
|
|
|
def validate_final_structure(item, structure=function_calling_output_structure):
|
|
if isinstance(item, list):
|
|
if not all(validate_final_structure(i, structure[0]) for i in item):
|
|
return Exception("Function calling final output doesn't match expected output format")
|
|
elif isinstance(item, dict):
|
|
if not all(k in item and validate_final_structure(item[k], v) for k, v in structure.items()):
|
|
return Exception("Function calling final output doesn't match expected output format")
|
|
else:
|
|
if not isinstance(item, structure):
|
|
return Exception("Function calling final output doesn't match expected output format")
|
|
return True
|
|
|
|
|
|
first_openai_function_call_example = {
|
|
"id": "chatcmpl-7zVRoE5HjHYsCMaVSNgOjzdhbS3P0",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694893248,
|
|
"model": "gpt-3.5-turbo-0613",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"content": None,
|
|
"function_call": {
|
|
"name": "get_current_weather",
|
|
"arguments": ""
|
|
}
|
|
},
|
|
"finish_reason": None
|
|
}
|
|
]
|
|
}
|
|
|
|
def validate_first_function_call_chunk_structure(item):
|
|
if not isinstance(item, dict):
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys = {"id", "object", "created", "model", "choices"}
|
|
for key in required_keys:
|
|
if key not in item:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not isinstance(item["choices"], list) or not item["choices"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys_in_choices_array = {"index", "delta", "finish_reason"}
|
|
for choice in item["choices"]:
|
|
if not isinstance(choice, dict):
|
|
raise Exception("Incorrect format")
|
|
for key in required_keys_in_choices_array:
|
|
if key not in choice:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not isinstance(choice["delta"], dict):
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys_in_delta = {"role", "content", "function_call"}
|
|
for key in required_keys_in_delta:
|
|
if key not in choice["delta"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not isinstance(choice["delta"]["function_call"], dict):
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys_in_function_call = {"name", "arguments"}
|
|
for key in required_keys_in_function_call:
|
|
if key not in choice["delta"]["function_call"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
return True
|
|
|
|
second_function_call_chunk_format = {
|
|
"id": "chatcmpl-7zVRoE5HjHYsCMaVSNgOjzdhbS3P0",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694893248,
|
|
"model": "gpt-3.5-turbo-0613",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"function_call": {
|
|
"arguments": "{\n"
|
|
}
|
|
},
|
|
"finish_reason": None
|
|
}
|
|
]
|
|
}
|
|
|
|
|
|
def validate_second_function_call_chunk_structure(data):
|
|
if not isinstance(data, dict):
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys = {"id", "object", "created", "model", "choices"}
|
|
for key in required_keys:
|
|
if key not in data:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not isinstance(data["choices"], list) or not data["choices"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys_in_choices_array = {"index", "delta", "finish_reason"}
|
|
for choice in data["choices"]:
|
|
if not isinstance(choice, dict):
|
|
raise Exception("Incorrect format")
|
|
for key in required_keys_in_choices_array:
|
|
if key not in choice:
|
|
raise Exception("Incorrect format")
|
|
|
|
if "function_call" not in choice["delta"] or "arguments" not in choice["delta"]["function_call"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
return True
|
|
|
|
|
|
final_function_call_chunk_example = {
|
|
"id": "chatcmpl-7zVRoE5HjHYsCMaVSNgOjzdhbS3P0",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694893248,
|
|
"model": "gpt-3.5-turbo-0613",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {},
|
|
"finish_reason": "function_call"
|
|
}
|
|
]
|
|
}
|
|
|
|
|
|
def validate_final_function_call_chunk_structure(data):
|
|
if not isinstance(data, dict):
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys = {"id", "object", "created", "model", "choices"}
|
|
for key in required_keys:
|
|
if key not in data:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not isinstance(data["choices"], list) or not data["choices"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys_in_choices_array = {"index", "delta", "finish_reason"}
|
|
for choice in data["choices"]:
|
|
if not isinstance(choice, dict):
|
|
raise Exception("Incorrect format")
|
|
for key in required_keys_in_choices_array:
|
|
if key not in choice:
|
|
raise Exception("Incorrect format")
|
|
|
|
return True
|
|
|
|
def streaming_and_function_calling_format_tests(idx, chunk):
|
|
extracted_chunk = ""
|
|
finished = False
|
|
print(f"idx: {idx}")
|
|
print(f"chunk: {chunk}")
|
|
decision = False
|
|
if idx == 0: # ensure role assistant is set
|
|
decision = validate_first_function_call_chunk_structure(chunk)
|
|
role = chunk["choices"][0]["delta"]["role"]
|
|
assert role == "assistant"
|
|
elif idx != 0: # second chunk
|
|
try:
|
|
decision = validate_second_function_call_chunk_structure(data=chunk)
|
|
except: # check if it's the last chunk (returns an empty delta {} )
|
|
decision = validate_final_function_call_chunk_structure(data=chunk)
|
|
finished = True
|
|
if "content" in chunk["choices"][0]["delta"]:
|
|
extracted_chunk = chunk["choices"][0]["delta"]["content"]
|
|
if decision == False:
|
|
raise Exception("incorrect format")
|
|
return extracted_chunk, finished
|
|
|
|
def test_openai_streaming_and_function_calling():
|
|
function1 = [
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
]
|
|
messages=[{"role": "user", "content": "What is the weather like in Boston?"}]
|
|
try:
|
|
response = completion(
|
|
model="gpt-3.5-turbo", functions=function1, messages=messages, stream=True
|
|
)
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
streaming_and_function_calling_format_tests(idx=idx, chunk=chunk)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
raise e
|
|
|
|
# test_openai_streaming_and_function_calling()
|