mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* ci(config.yml): add a 'check_code_quality' step Addresses https://github.com/BerriAI/litellm/issues/5991 * ci(config.yml): check why circle ci doesn't pick up this test * ci(config.yml): fix to run 'check_code_quality' tests * fix(__init__.py): fix unprotected import * fix(__init__.py): don't remove unused imports * build(ruff.toml): update ruff.toml to ignore unused imports * fix: fix: ruff + pyright - fix linting + type-checking errors * fix: fix linting errors * fix(lago.py): fix module init error * fix: fix linting errors * ci(config.yml): cd into correct dir for checks * fix(proxy_server.py): fix linting error * fix(utils.py): fix bare except causes ruff linting errors * fix: ruff - fix remaining linting errors * fix(clickhouse.py): use standard logging object * fix(__init__.py): fix unprotected import * fix: ruff - fix linting errors * fix: fix linting errors * ci(config.yml): cleanup code qa step (formatting handled in local_testing) * fix(_health_endpoints.py): fix ruff linting errors * ci(config.yml): just use ruff in check_code_quality pipeline for now * build(custom_guardrail.py): include missing file * style(embedding_handler.py): fix ruff check
167 lines
5.9 KiB
Python
167 lines
5.9 KiB
Python
#### What this does ####
|
|
# On success + failure, log events to aispend.io
|
|
import datetime
|
|
import os
|
|
import traceback
|
|
|
|
import dotenv
|
|
|
|
model_cost = {
|
|
"gpt-3.5-turbo": {
|
|
"max_tokens": 4000,
|
|
"input_cost_per_token": 0.0000015,
|
|
"output_cost_per_token": 0.000002,
|
|
},
|
|
"gpt-35-turbo": {
|
|
"max_tokens": 4000,
|
|
"input_cost_per_token": 0.0000015,
|
|
"output_cost_per_token": 0.000002,
|
|
}, # azure model name
|
|
"gpt-3.5-turbo-0613": {
|
|
"max_tokens": 4000,
|
|
"input_cost_per_token": 0.0000015,
|
|
"output_cost_per_token": 0.000002,
|
|
},
|
|
"gpt-3.5-turbo-0301": {
|
|
"max_tokens": 4000,
|
|
"input_cost_per_token": 0.0000015,
|
|
"output_cost_per_token": 0.000002,
|
|
},
|
|
"gpt-3.5-turbo-16k": {
|
|
"max_tokens": 16000,
|
|
"input_cost_per_token": 0.000003,
|
|
"output_cost_per_token": 0.000004,
|
|
},
|
|
"gpt-35-turbo-16k": {
|
|
"max_tokens": 16000,
|
|
"input_cost_per_token": 0.000003,
|
|
"output_cost_per_token": 0.000004,
|
|
}, # azure model name
|
|
"gpt-3.5-turbo-16k-0613": {
|
|
"max_tokens": 16000,
|
|
"input_cost_per_token": 0.000003,
|
|
"output_cost_per_token": 0.000004,
|
|
},
|
|
"gpt-4": {
|
|
"max_tokens": 8000,
|
|
"input_cost_per_token": 0.000003,
|
|
"output_cost_per_token": 0.00006,
|
|
},
|
|
"gpt-4-0613": {
|
|
"max_tokens": 8000,
|
|
"input_cost_per_token": 0.000003,
|
|
"output_cost_per_token": 0.00006,
|
|
},
|
|
"gpt-4-32k": {
|
|
"max_tokens": 8000,
|
|
"input_cost_per_token": 0.00006,
|
|
"output_cost_per_token": 0.00012,
|
|
},
|
|
"claude-instant-1": {
|
|
"max_tokens": 100000,
|
|
"input_cost_per_token": 0.00000163,
|
|
"output_cost_per_token": 0.00000551,
|
|
},
|
|
"claude-2": {
|
|
"max_tokens": 100000,
|
|
"input_cost_per_token": 0.00001102,
|
|
"output_cost_per_token": 0.00003268,
|
|
},
|
|
"text-bison-001": {
|
|
"max_tokens": 8192,
|
|
"input_cost_per_token": 0.000004,
|
|
"output_cost_per_token": 0.000004,
|
|
},
|
|
"chat-bison-001": {
|
|
"max_tokens": 4096,
|
|
"input_cost_per_token": 0.000002,
|
|
"output_cost_per_token": 0.000002,
|
|
},
|
|
"command-nightly": {
|
|
"max_tokens": 4096,
|
|
"input_cost_per_token": 0.000015,
|
|
"output_cost_per_token": 0.000015,
|
|
},
|
|
}
|
|
|
|
|
|
class AISpendLogger:
|
|
# Class variables or attributes
|
|
def __init__(self):
|
|
# Instance variables
|
|
self.account_id = os.getenv("AISPEND_ACCOUNT_ID")
|
|
self.api_key = os.getenv("AISPEND_API_KEY")
|
|
|
|
def price_calculator(self, model, response_obj, start_time, end_time):
|
|
# try and find if the model is in the model_cost map
|
|
# else default to the average of the costs
|
|
prompt_tokens_cost_usd_dollar = 0
|
|
completion_tokens_cost_usd_dollar = 0
|
|
if model in model_cost:
|
|
prompt_tokens_cost_usd_dollar = (
|
|
model_cost[model]["input_cost_per_token"]
|
|
* response_obj["usage"]["prompt_tokens"]
|
|
)
|
|
completion_tokens_cost_usd_dollar = (
|
|
model_cost[model]["output_cost_per_token"]
|
|
* response_obj["usage"]["completion_tokens"]
|
|
)
|
|
elif "replicate" in model:
|
|
# replicate models are charged based on time
|
|
# llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
|
|
model_run_time = end_time - start_time # assuming time in seconds
|
|
cost_usd_dollar = model_run_time * 0.0032
|
|
prompt_tokens_cost_usd_dollar = cost_usd_dollar / 2
|
|
completion_tokens_cost_usd_dollar = cost_usd_dollar / 2
|
|
else:
|
|
# calculate average input cost
|
|
input_cost_sum = 0
|
|
output_cost_sum = 0
|
|
for model in model_cost:
|
|
input_cost_sum += model_cost[model]["input_cost_per_token"]
|
|
output_cost_sum += model_cost[model]["output_cost_per_token"]
|
|
prompt_tokens_cost_usd_dollar = (
|
|
model_cost[model]["input_cost_per_token"]
|
|
* response_obj["usage"]["prompt_tokens"]
|
|
)
|
|
completion_tokens_cost_usd_dollar = (
|
|
model_cost[model]["output_cost_per_token"]
|
|
* response_obj["usage"]["completion_tokens"]
|
|
)
|
|
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
|
|
|
def log_event(self, model, response_obj, start_time, end_time, print_verbose):
|
|
# Method definition
|
|
try:
|
|
print_verbose(
|
|
f"AISpend Logging - Enters logging function for model {model}"
|
|
)
|
|
|
|
response_timestamp = datetime.datetime.fromtimestamp(
|
|
int(response_obj["created"])
|
|
).strftime("%Y-%m-%d")
|
|
|
|
(
|
|
prompt_tokens_cost_usd_dollar,
|
|
completion_tokens_cost_usd_dollar,
|
|
) = self.price_calculator(model, response_obj, start_time, end_time)
|
|
prompt_tokens_cost_usd_cent = prompt_tokens_cost_usd_dollar * 100
|
|
completion_tokens_cost_usd_cent = completion_tokens_cost_usd_dollar * 100
|
|
data = [
|
|
{
|
|
"requests": 1,
|
|
"requests_context": 1,
|
|
"context_tokens": response_obj["usage"]["prompt_tokens"],
|
|
"requests_generated": 1,
|
|
"generated_tokens": response_obj["usage"]["completion_tokens"],
|
|
"recorded_date": response_timestamp,
|
|
"model_id": response_obj["model"],
|
|
"generated_tokens_cost_usd_cent": prompt_tokens_cost_usd_cent,
|
|
"context_tokens_cost_usd_cent": completion_tokens_cost_usd_cent,
|
|
}
|
|
]
|
|
|
|
print_verbose(f"AISpend Logging - final data object: {data}")
|
|
except Exception:
|
|
print_verbose(f"AISpend Logging Error - {traceback.format_exc()}")
|
|
pass
|