litellm-mirror/litellm/llms/files_apis/azure.py
Krish Dholakia d57be47b0f
Litellm ruff linting enforcement (#5992)
* ci(config.yml): add a 'check_code_quality' step

Addresses https://github.com/BerriAI/litellm/issues/5991

* ci(config.yml): check why circle ci doesn't pick up this test

* ci(config.yml): fix to run 'check_code_quality' tests

* fix(__init__.py): fix unprotected import

* fix(__init__.py): don't remove unused imports

* build(ruff.toml): update ruff.toml to ignore unused imports

* fix: fix: ruff + pyright - fix linting + type-checking errors

* fix: fix linting errors

* fix(lago.py): fix module init error

* fix: fix linting errors

* ci(config.yml): cd into correct dir for checks

* fix(proxy_server.py): fix linting error

* fix(utils.py): fix bare except

causes ruff linting errors

* fix: ruff - fix remaining linting errors

* fix(clickhouse.py): use standard logging object

* fix(__init__.py): fix unprotected import

* fix: ruff - fix linting errors

* fix: fix linting errors

* ci(config.yml): cleanup code qa step (formatting handled in local_testing)

* fix(_health_endpoints.py): fix ruff linting errors

* ci(config.yml): just use ruff in check_code_quality pipeline for now

* build(custom_guardrail.py): include missing file

* style(embedding_handler.py): fix ruff check
2024-10-01 19:44:20 -04:00

318 lines
11 KiB
Python

from typing import Any, Coroutine, Dict, List, Optional, Union
import httpx
from openai import AsyncAzureOpenAI, AzureOpenAI
from openai.types.file_deleted import FileDeleted
import litellm
from litellm._logging import verbose_logger
from litellm.llms.base import BaseLLM
from litellm.types.llms.openai import *
def get_azure_openai_client(
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
api_version: Optional[str] = None,
organization: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
_is_async: bool = False,
) -> Optional[Union[AzureOpenAI, AsyncAzureOpenAI]]:
received_args = locals()
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None
if client is None:
data = {}
for k, v in received_args.items():
if k == "self" or k == "client" or k == "_is_async":
pass
elif k == "api_base" and v is not None:
data["azure_endpoint"] = v
elif v is not None:
data[k] = v
if "api_version" not in data:
data["api_version"] = litellm.AZURE_DEFAULT_API_VERSION
if _is_async is True:
openai_client = AsyncAzureOpenAI(**data)
else:
openai_client = AzureOpenAI(**data) # type: ignore
else:
openai_client = client
return openai_client
class AzureOpenAIFilesAPI(BaseLLM):
"""
AzureOpenAI methods to support for batches
- create_file()
- retrieve_file()
- list_files()
- delete_file()
- file_content()
- update_file()
"""
def __init__(self) -> None:
super().__init__()
async def acreate_file(
self,
create_file_data: CreateFileRequest,
openai_client: AsyncAzureOpenAI,
) -> FileObject:
verbose_logger.debug("create_file_data=%s", create_file_data)
response = await openai_client.files.create(**create_file_data)
verbose_logger.debug("create_file_response=%s", response)
return response
def create_file(
self,
_is_async: bool,
create_file_data: CreateFileRequest,
api_base: Optional[str],
api_key: Optional[str],
api_version: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
) -> Union[FileObject, Coroutine[Any, Any, FileObject]]:
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
get_azure_openai_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
timeout=timeout,
max_retries=max_retries,
client=client,
_is_async=_is_async,
)
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.acreate_file( # type: ignore
create_file_data=create_file_data, openai_client=openai_client
)
response = openai_client.files.create(**create_file_data)
return response
async def afile_content(
self,
file_content_request: FileContentRequest,
openai_client: AsyncAzureOpenAI,
) -> HttpxBinaryResponseContent:
response = await openai_client.files.content(**file_content_request)
return response
def file_content(
self,
_is_async: bool,
file_content_request: FileContentRequest,
api_base: Optional[str],
api_key: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
) -> Union[
HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]
]:
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
get_azure_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
api_version=api_version,
max_retries=max_retries,
organization=None,
client=client,
_is_async=_is_async,
)
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.afile_content( # type: ignore
file_content_request=file_content_request,
openai_client=openai_client,
)
response = openai_client.files.content(**file_content_request)
return response
async def aretrieve_file(
self,
file_id: str,
openai_client: AsyncAzureOpenAI,
) -> FileObject:
response = await openai_client.files.retrieve(file_id=file_id)
return response
def retrieve_file(
self,
_is_async: bool,
file_id: str,
api_base: Optional[str],
api_key: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
):
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
get_azure_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=None,
api_version=api_version,
client=client,
_is_async=_is_async,
)
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.aretrieve_file( # type: ignore
file_id=file_id,
openai_client=openai_client,
)
response = openai_client.files.retrieve(file_id=file_id)
return response
async def adelete_file(
self,
file_id: str,
openai_client: AsyncAzureOpenAI,
) -> FileDeleted:
response = await openai_client.files.delete(file_id=file_id)
if not isinstance(response, FileDeleted): # azure returns an empty string
return FileDeleted(id=file_id, deleted=True, object="file")
return response
def delete_file(
self,
_is_async: bool,
file_id: str,
api_base: Optional[str],
api_key: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str] = None,
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
):
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
get_azure_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
api_version=api_version,
client=client,
_is_async=_is_async,
)
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.adelete_file( # type: ignore
file_id=file_id,
openai_client=openai_client,
)
response = openai_client.files.delete(file_id=file_id)
if not isinstance(response, FileDeleted): # azure returns an empty string
return FileDeleted(id=file_id, deleted=True, object="file")
return response
async def alist_files(
self,
openai_client: AsyncAzureOpenAI,
purpose: Optional[str] = None,
):
if isinstance(purpose, str):
response = await openai_client.files.list(purpose=purpose)
else:
response = await openai_client.files.list()
return response
def list_files(
self,
_is_async: bool,
api_base: Optional[str],
api_key: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
purpose: Optional[str] = None,
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
):
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
get_azure_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=None, # openai param
api_version=api_version,
client=client,
_is_async=_is_async,
)
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.alist_files( # type: ignore
purpose=purpose,
openai_client=openai_client,
)
if isinstance(purpose, str):
response = openai_client.files.list(purpose=purpose)
else:
response = openai_client.files.list()
return response