mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* ci(config.yml): add a 'check_code_quality' step Addresses https://github.com/BerriAI/litellm/issues/5991 * ci(config.yml): check why circle ci doesn't pick up this test * ci(config.yml): fix to run 'check_code_quality' tests * fix(__init__.py): fix unprotected import * fix(__init__.py): don't remove unused imports * build(ruff.toml): update ruff.toml to ignore unused imports * fix: fix: ruff + pyright - fix linting + type-checking errors * fix: fix linting errors * fix(lago.py): fix module init error * fix: fix linting errors * ci(config.yml): cd into correct dir for checks * fix(proxy_server.py): fix linting error * fix(utils.py): fix bare except causes ruff linting errors * fix: ruff - fix remaining linting errors * fix(clickhouse.py): use standard logging object * fix(__init__.py): fix unprotected import * fix: ruff - fix linting errors * fix: fix linting errors * ci(config.yml): cleanup code qa step (formatting handled in local_testing) * fix(_health_endpoints.py): fix ruff linting errors * ci(config.yml): just use ruff in check_code_quality pipeline for now * build(custom_guardrail.py): include missing file * style(embedding_handler.py): fix ruff check
318 lines
11 KiB
Python
318 lines
11 KiB
Python
from typing import Any, Coroutine, Dict, List, Optional, Union
|
|
|
|
import httpx
|
|
from openai import AsyncAzureOpenAI, AzureOpenAI
|
|
from openai.types.file_deleted import FileDeleted
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_logger
|
|
from litellm.llms.base import BaseLLM
|
|
from litellm.types.llms.openai import *
|
|
|
|
|
|
def get_azure_openai_client(
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
api_version: Optional[str] = None,
|
|
organization: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
_is_async: bool = False,
|
|
) -> Optional[Union[AzureOpenAI, AsyncAzureOpenAI]]:
|
|
received_args = locals()
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None
|
|
if client is None:
|
|
data = {}
|
|
for k, v in received_args.items():
|
|
if k == "self" or k == "client" or k == "_is_async":
|
|
pass
|
|
elif k == "api_base" and v is not None:
|
|
data["azure_endpoint"] = v
|
|
elif v is not None:
|
|
data[k] = v
|
|
if "api_version" not in data:
|
|
data["api_version"] = litellm.AZURE_DEFAULT_API_VERSION
|
|
if _is_async is True:
|
|
openai_client = AsyncAzureOpenAI(**data)
|
|
else:
|
|
openai_client = AzureOpenAI(**data) # type: ignore
|
|
else:
|
|
openai_client = client
|
|
|
|
return openai_client
|
|
|
|
|
|
class AzureOpenAIFilesAPI(BaseLLM):
|
|
"""
|
|
AzureOpenAI methods to support for batches
|
|
- create_file()
|
|
- retrieve_file()
|
|
- list_files()
|
|
- delete_file()
|
|
- file_content()
|
|
- update_file()
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
async def acreate_file(
|
|
self,
|
|
create_file_data: CreateFileRequest,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> FileObject:
|
|
verbose_logger.debug("create_file_data=%s", create_file_data)
|
|
response = await openai_client.files.create(**create_file_data)
|
|
verbose_logger.debug("create_file_response=%s", response)
|
|
return response
|
|
|
|
def create_file(
|
|
self,
|
|
_is_async: bool,
|
|
create_file_data: CreateFileRequest,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
api_version: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
) -> Union[FileObject, Coroutine[Any, Any, FileObject]]:
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.acreate_file( # type: ignore
|
|
create_file_data=create_file_data, openai_client=openai_client
|
|
)
|
|
response = openai_client.files.create(**create_file_data)
|
|
return response
|
|
|
|
async def afile_content(
|
|
self,
|
|
file_content_request: FileContentRequest,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> HttpxBinaryResponseContent:
|
|
response = await openai_client.files.content(**file_content_request)
|
|
return response
|
|
|
|
def file_content(
|
|
self,
|
|
_is_async: bool,
|
|
file_content_request: FileContentRequest,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
) -> Union[
|
|
HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]
|
|
]:
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
api_version=api_version,
|
|
max_retries=max_retries,
|
|
organization=None,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.afile_content( # type: ignore
|
|
file_content_request=file_content_request,
|
|
openai_client=openai_client,
|
|
)
|
|
response = openai_client.files.content(**file_content_request)
|
|
|
|
return response
|
|
|
|
async def aretrieve_file(
|
|
self,
|
|
file_id: str,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> FileObject:
|
|
response = await openai_client.files.retrieve(file_id=file_id)
|
|
return response
|
|
|
|
def retrieve_file(
|
|
self,
|
|
_is_async: bool,
|
|
file_id: str,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
):
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=None,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.aretrieve_file( # type: ignore
|
|
file_id=file_id,
|
|
openai_client=openai_client,
|
|
)
|
|
response = openai_client.files.retrieve(file_id=file_id)
|
|
|
|
return response
|
|
|
|
async def adelete_file(
|
|
self,
|
|
file_id: str,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> FileDeleted:
|
|
response = await openai_client.files.delete(file_id=file_id)
|
|
|
|
if not isinstance(response, FileDeleted): # azure returns an empty string
|
|
return FileDeleted(id=file_id, deleted=True, object="file")
|
|
return response
|
|
|
|
def delete_file(
|
|
self,
|
|
_is_async: bool,
|
|
file_id: str,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
organization: Optional[str] = None,
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
):
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.adelete_file( # type: ignore
|
|
file_id=file_id,
|
|
openai_client=openai_client,
|
|
)
|
|
response = openai_client.files.delete(file_id=file_id)
|
|
|
|
if not isinstance(response, FileDeleted): # azure returns an empty string
|
|
return FileDeleted(id=file_id, deleted=True, object="file")
|
|
|
|
return response
|
|
|
|
async def alist_files(
|
|
self,
|
|
openai_client: AsyncAzureOpenAI,
|
|
purpose: Optional[str] = None,
|
|
):
|
|
if isinstance(purpose, str):
|
|
response = await openai_client.files.list(purpose=purpose)
|
|
else:
|
|
response = await openai_client.files.list()
|
|
return response
|
|
|
|
def list_files(
|
|
self,
|
|
_is_async: bool,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
purpose: Optional[str] = None,
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
):
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=None, # openai param
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.alist_files( # type: ignore
|
|
purpose=purpose,
|
|
openai_client=openai_client,
|
|
)
|
|
|
|
if isinstance(purpose, str):
|
|
response = openai_client.files.list(purpose=purpose)
|
|
else:
|
|
response = openai_client.files.list()
|
|
|
|
return response
|