mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* ci(config.yml): add a 'check_code_quality' step Addresses https://github.com/BerriAI/litellm/issues/5991 * ci(config.yml): check why circle ci doesn't pick up this test * ci(config.yml): fix to run 'check_code_quality' tests * fix(__init__.py): fix unprotected import * fix(__init__.py): don't remove unused imports * build(ruff.toml): update ruff.toml to ignore unused imports * fix: fix: ruff + pyright - fix linting + type-checking errors * fix: fix linting errors * fix(lago.py): fix module init error * fix: fix linting errors * ci(config.yml): cd into correct dir for checks * fix(proxy_server.py): fix linting error * fix(utils.py): fix bare except causes ruff linting errors * fix: ruff - fix remaining linting errors * fix(clickhouse.py): use standard logging object * fix(__init__.py): fix unprotected import * fix: ruff - fix linting errors * fix: fix linting errors * ci(config.yml): cleanup code qa step (formatting handled in local_testing) * fix(_health_endpoints.py): fix ruff linting errors * ci(config.yml): just use ruff in check_code_quality pipeline for now * build(custom_guardrail.py): include missing file * style(embedding_handler.py): fix ruff check
1108 lines
41 KiB
Python
1108 lines
41 KiB
Python
import io
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
import types
|
|
from copy import deepcopy
|
|
from enum import Enum
|
|
from functools import partial
|
|
from typing import Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Union
|
|
|
|
import httpx # type: ignore
|
|
import requests # type: ignore
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_logger
|
|
from litellm.litellm_core_utils.asyncify import asyncify
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
_get_httpx_client,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.types.llms.openai import (
|
|
ChatCompletionToolCallChunk,
|
|
ChatCompletionUsageBlock,
|
|
)
|
|
from litellm.types.utils import GenericStreamingChunk as GChunk
|
|
from litellm.types.utils import StreamingChatCompletionChunk
|
|
from litellm.utils import (
|
|
CustomStreamWrapper,
|
|
EmbeddingResponse,
|
|
ModelResponse,
|
|
Usage,
|
|
get_secret,
|
|
)
|
|
|
|
from ..base_aws_llm import BaseAWSLLM
|
|
from ..prompt_templates.factory import custom_prompt, prompt_factory
|
|
|
|
_response_stream_shape_cache = None
|
|
|
|
|
|
class SagemakerError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker"
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class SagemakerConfig:
|
|
"""
|
|
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
|
|
"""
|
|
|
|
max_new_tokens: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
temperature: Optional[float] = None
|
|
return_full_text: Optional[bool] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_new_tokens: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
temperature: Optional[float] = None,
|
|
return_full_text: Optional[bool] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
|
|
"""
|
|
SAGEMAKER AUTH Keys/Vars
|
|
os.environ['AWS_ACCESS_KEY_ID'] = ""
|
|
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
|
|
"""
|
|
|
|
|
|
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
|
|
class SagemakerLLM(BaseAWSLLM):
|
|
|
|
def _load_credentials(
|
|
self,
|
|
optional_params: dict,
|
|
):
|
|
try:
|
|
from botocore.credentials import Credentials
|
|
except ImportError:
|
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
|
## CREDENTIALS ##
|
|
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
aws_session_token = optional_params.pop("aws_session_token", None)
|
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
aws_role_name = optional_params.pop("aws_role_name", None)
|
|
aws_session_name = optional_params.pop("aws_session_name", None)
|
|
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
|
optional_params.pop(
|
|
"aws_bedrock_runtime_endpoint", None
|
|
) # https://bedrock-runtime.{region_name}.amazonaws.com
|
|
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
|
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
|
|
|
|
### SET REGION NAME ###
|
|
if aws_region_name is None:
|
|
# check env #
|
|
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
|
|
|
|
if litellm_aws_region_name is not None and isinstance(
|
|
litellm_aws_region_name, str
|
|
):
|
|
aws_region_name = litellm_aws_region_name
|
|
|
|
standard_aws_region_name = get_secret("AWS_REGION", None)
|
|
if standard_aws_region_name is not None and isinstance(
|
|
standard_aws_region_name, str
|
|
):
|
|
aws_region_name = standard_aws_region_name
|
|
|
|
if aws_region_name is None:
|
|
aws_region_name = "us-west-2"
|
|
|
|
credentials: Credentials = self.get_credentials(
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
aws_session_token=aws_session_token,
|
|
aws_region_name=aws_region_name,
|
|
aws_session_name=aws_session_name,
|
|
aws_profile_name=aws_profile_name,
|
|
aws_role_name=aws_role_name,
|
|
aws_web_identity_token=aws_web_identity_token,
|
|
aws_sts_endpoint=aws_sts_endpoint,
|
|
)
|
|
return credentials, aws_region_name
|
|
|
|
def _prepare_request(
|
|
self,
|
|
credentials,
|
|
model: str,
|
|
data: dict,
|
|
optional_params: dict,
|
|
aws_region_name: str,
|
|
extra_headers: Optional[dict] = None,
|
|
):
|
|
try:
|
|
import boto3
|
|
from botocore.auth import SigV4Auth
|
|
from botocore.awsrequest import AWSRequest
|
|
from botocore.credentials import Credentials
|
|
except ImportError:
|
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
|
|
|
sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
|
|
if optional_params.get("stream") is True:
|
|
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
|
|
else:
|
|
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"
|
|
|
|
sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
|
|
if sagemaker_base_url is not None:
|
|
api_base = sagemaker_base_url
|
|
|
|
encoded_data = json.dumps(data).encode("utf-8")
|
|
headers = {"Content-Type": "application/json"}
|
|
if extra_headers is not None:
|
|
headers = {"Content-Type": "application/json", **extra_headers}
|
|
request = AWSRequest(
|
|
method="POST", url=api_base, data=encoded_data, headers=headers
|
|
)
|
|
sigv4.add_auth(request)
|
|
if (
|
|
extra_headers is not None and "Authorization" in extra_headers
|
|
): # prevent sigv4 from overwriting the auth header
|
|
request.headers["Authorization"] = extra_headers["Authorization"]
|
|
|
|
prepped_request = request.prepare()
|
|
|
|
return prepped_request
|
|
|
|
def _transform_prompt(
|
|
self,
|
|
model: str,
|
|
messages: List,
|
|
custom_prompt_dict: dict,
|
|
hf_model_name: Optional[str],
|
|
) -> str:
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", None),
|
|
initial_prompt_value=model_prompt_details.get(
|
|
"initial_prompt_value", ""
|
|
),
|
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
|
messages=messages,
|
|
)
|
|
elif hf_model_name in custom_prompt_dict:
|
|
# check if the base huggingface model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[hf_model_name]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", None),
|
|
initial_prompt_value=model_prompt_details.get(
|
|
"initial_prompt_value", ""
|
|
),
|
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
|
messages=messages,
|
|
)
|
|
else:
|
|
if hf_model_name is None:
|
|
if "llama-2" in model.lower(): # llama-2 model
|
|
if "chat" in model.lower(): # apply llama2 chat template
|
|
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
|
|
else: # apply regular llama2 template
|
|
hf_model_name = "meta-llama/Llama-2-7b"
|
|
hf_model_name = (
|
|
hf_model_name or model
|
|
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
|
|
prompt: str = prompt_factory(model=hf_model_name, messages=messages) # type: ignore
|
|
|
|
return prompt
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
custom_prompt_dict={},
|
|
hf_model_name=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
acompletion: bool = False,
|
|
use_messages_api: Optional[bool] = None,
|
|
):
|
|
|
|
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
|
credentials, aws_region_name = self._load_credentials(optional_params)
|
|
inference_params = deepcopy(optional_params)
|
|
stream = inference_params.pop("stream", None)
|
|
model_id = optional_params.get("model_id", None)
|
|
|
|
if use_messages_api is True:
|
|
from litellm.llms.databricks.chat import DatabricksChatCompletion
|
|
|
|
openai_like_chat_completions = DatabricksChatCompletion()
|
|
inference_params["stream"] = True if stream is True else False
|
|
_data: Dict[str, Any] = {
|
|
"model": model,
|
|
"messages": messages,
|
|
**inference_params,
|
|
}
|
|
|
|
prepared_request = self._prepare_request(
|
|
model=model,
|
|
data=_data,
|
|
optional_params=optional_params,
|
|
credentials=credentials,
|
|
aws_region_name=aws_region_name,
|
|
)
|
|
|
|
custom_stream_decoder = AWSEventStreamDecoder(
|
|
model="", is_messages_api=True
|
|
)
|
|
|
|
return openai_like_chat_completions.completion(
|
|
model=model,
|
|
messages=messages,
|
|
api_base=prepared_request.url,
|
|
api_key=None,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
logging_obj=logging_obj,
|
|
optional_params=inference_params,
|
|
acompletion=acompletion,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
timeout=timeout,
|
|
encoding=encoding,
|
|
headers=prepared_request.headers, # type: ignore
|
|
custom_endpoint=True,
|
|
custom_llm_provider="sagemaker_chat",
|
|
streaming_decoder=custom_stream_decoder, # type: ignore
|
|
)
|
|
|
|
## Load Config
|
|
config = litellm.SagemakerConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in inference_params
|
|
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
|
|
if stream is True:
|
|
data = {"parameters": inference_params, "stream": True}
|
|
prepared_request = self._prepare_request(
|
|
model=model,
|
|
data=data,
|
|
optional_params=optional_params,
|
|
credentials=credentials,
|
|
aws_region_name=aws_region_name,
|
|
)
|
|
if model_id is not None:
|
|
# Add model_id as InferenceComponentName header
|
|
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
|
|
prepared_request.headers.update(
|
|
{"X-Amzn-SageMaker-Inference-Component": model_id}
|
|
)
|
|
|
|
if acompletion is True:
|
|
response = self.async_streaming(
|
|
messages=messages,
|
|
model=model,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
hf_model_name=hf_model_name,
|
|
optional_params=optional_params,
|
|
encoding=encoding,
|
|
model_response=model_response,
|
|
logging_obj=logging_obj,
|
|
data=data,
|
|
model_id=model_id,
|
|
aws_region_name=aws_region_name,
|
|
credentials=credentials,
|
|
)
|
|
return response
|
|
else:
|
|
prompt = self._transform_prompt(
|
|
model=model,
|
|
messages=messages,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
hf_model_name=hf_model_name,
|
|
)
|
|
data["inputs"] = prompt
|
|
prepared_request = self._prepare_request(
|
|
model=model,
|
|
data=data,
|
|
optional_params=optional_params,
|
|
credentials=credentials,
|
|
aws_region_name=aws_region_name,
|
|
)
|
|
if model_id is not None:
|
|
# Add model_id as InferenceComponentName header
|
|
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
|
|
prepared_request.headers.update(
|
|
{"X-Amzn-SageMaker-Inference-Component": model_id}
|
|
)
|
|
sync_handler = _get_httpx_client()
|
|
sync_response = sync_handler.post(
|
|
url=prepared_request.url,
|
|
headers=prepared_request.headers, # type: ignore
|
|
json=data,
|
|
stream=stream,
|
|
)
|
|
|
|
if sync_response.status_code != 200:
|
|
raise SagemakerError(
|
|
status_code=sync_response.status_code,
|
|
message=sync_response.read(),
|
|
)
|
|
|
|
decoder = AWSEventStreamDecoder(model="")
|
|
|
|
completion_stream = decoder.iter_bytes(
|
|
sync_response.iter_bytes(chunk_size=1024)
|
|
)
|
|
streaming_response = CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider="sagemaker",
|
|
logging_obj=logging_obj,
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=streaming_response,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
return streaming_response
|
|
|
|
# Non-Streaming Requests
|
|
_data = {"parameters": inference_params}
|
|
prepared_request_args = {
|
|
"model": model,
|
|
"data": _data,
|
|
"optional_params": optional_params,
|
|
"credentials": credentials,
|
|
"aws_region_name": aws_region_name,
|
|
}
|
|
|
|
# Async completion
|
|
if acompletion is True:
|
|
return self.async_completion(
|
|
messages=messages,
|
|
model=model,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
hf_model_name=hf_model_name,
|
|
model_response=model_response,
|
|
encoding=encoding,
|
|
logging_obj=logging_obj,
|
|
data=_data,
|
|
model_id=model_id,
|
|
optional_params=optional_params,
|
|
credentials=credentials,
|
|
aws_region_name=aws_region_name,
|
|
)
|
|
|
|
prompt = self._transform_prompt(
|
|
model=model,
|
|
messages=messages,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
hf_model_name=hf_model_name,
|
|
)
|
|
_data["inputs"] = prompt
|
|
## Non-Streaming completion CALL
|
|
prepared_request = self._prepare_request(**prepared_request_args)
|
|
try:
|
|
if model_id is not None:
|
|
# Add model_id as InferenceComponentName header
|
|
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
|
|
prepared_request.headers.update(
|
|
{"X-Amzn-SageMaker-Inference-Component": model_id}
|
|
)
|
|
|
|
## LOGGING
|
|
timeout = 300.0
|
|
sync_handler = _get_httpx_client()
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=[],
|
|
api_key="",
|
|
additional_args={
|
|
"complete_input_dict": _data,
|
|
"api_base": prepared_request.url,
|
|
"headers": prepared_request.headers,
|
|
},
|
|
)
|
|
|
|
# make sync httpx post request here
|
|
try:
|
|
sync_response = sync_handler.post(
|
|
url=prepared_request.url,
|
|
headers=prepared_request.headers, # type: ignore
|
|
json=_data,
|
|
timeout=timeout,
|
|
)
|
|
|
|
if sync_response.status_code != 200:
|
|
raise SagemakerError(
|
|
status_code=sync_response.status_code,
|
|
message=sync_response.text,
|
|
)
|
|
except Exception as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=[],
|
|
api_key="",
|
|
original_response=str(e),
|
|
additional_args={"complete_input_dict": _data},
|
|
)
|
|
raise e
|
|
except Exception as e:
|
|
verbose_logger.error("Sagemaker error %s", str(e))
|
|
status_code = (
|
|
getattr(e, "response", {})
|
|
.get("ResponseMetadata", {})
|
|
.get("HTTPStatusCode", 500)
|
|
)
|
|
error_message = (
|
|
getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
|
|
)
|
|
if "Inference Component Name header is required" in error_message:
|
|
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
|
|
raise SagemakerError(status_code=status_code, message=error_message)
|
|
|
|
completion_response = sync_response.json()
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=completion_response,
|
|
additional_args={"complete_input_dict": _data},
|
|
)
|
|
print_verbose(f"raw model_response: {completion_response}")
|
|
## RESPONSE OBJECT
|
|
try:
|
|
if isinstance(completion_response, list):
|
|
completion_response_choices = completion_response[0]
|
|
else:
|
|
completion_response_choices = completion_response
|
|
completion_output = ""
|
|
if "generation" in completion_response_choices:
|
|
completion_output += completion_response_choices["generation"]
|
|
elif "generated_text" in completion_response_choices:
|
|
completion_output += completion_response_choices["generated_text"]
|
|
|
|
# check if the prompt template is part of output, if so - filter it out
|
|
if completion_output.startswith(prompt) and "<s>" in prompt:
|
|
completion_output = completion_output.replace(prompt, "", 1)
|
|
|
|
model_response.choices[0].message.content = completion_output # type: ignore
|
|
except Exception:
|
|
raise SagemakerError(
|
|
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
|
status_code=500,
|
|
)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
)
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
return model_response
|
|
|
|
async def make_async_call(
|
|
self,
|
|
api_base: str,
|
|
headers: dict,
|
|
data: dict,
|
|
logging_obj,
|
|
client=None,
|
|
):
|
|
try:
|
|
if client is None:
|
|
client = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.SAGEMAKER
|
|
) # Create a new client if none provided
|
|
response = await client.post(
|
|
api_base,
|
|
headers=headers,
|
|
json=data,
|
|
stream=True,
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise SagemakerError(
|
|
status_code=response.status_code, message=response.text
|
|
)
|
|
|
|
decoder = AWSEventStreamDecoder(model="")
|
|
completion_stream = decoder.aiter_bytes(
|
|
response.aiter_bytes(chunk_size=1024)
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=[],
|
|
api_key="",
|
|
original_response="first stream response received",
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
except httpx.HTTPStatusError as err:
|
|
error_code = err.response.status_code
|
|
raise SagemakerError(status_code=error_code, message=err.response.text)
|
|
except httpx.TimeoutException:
|
|
raise SagemakerError(status_code=408, message="Timeout error occurred.")
|
|
except Exception as e:
|
|
raise SagemakerError(status_code=500, message=str(e))
|
|
|
|
async def async_streaming(
|
|
self,
|
|
messages: list,
|
|
model: str,
|
|
custom_prompt_dict: dict,
|
|
hf_model_name: Optional[str],
|
|
credentials,
|
|
aws_region_name: str,
|
|
optional_params,
|
|
encoding,
|
|
model_response: ModelResponse,
|
|
model_id: Optional[str],
|
|
logging_obj: Any,
|
|
data,
|
|
):
|
|
data["inputs"] = self._transform_prompt(
|
|
model=model,
|
|
messages=messages,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
hf_model_name=hf_model_name,
|
|
)
|
|
asyncified_prepare_request = asyncify(self._prepare_request)
|
|
prepared_request_args = {
|
|
"model": model,
|
|
"data": data,
|
|
"optional_params": optional_params,
|
|
"credentials": credentials,
|
|
"aws_region_name": aws_region_name,
|
|
}
|
|
prepared_request = await asyncified_prepare_request(**prepared_request_args)
|
|
streaming_response = CustomStreamWrapper(
|
|
completion_stream=None,
|
|
make_call=partial(
|
|
self.make_async_call,
|
|
api_base=prepared_request.url,
|
|
headers=prepared_request.headers, # type: ignore
|
|
data=data,
|
|
logging_obj=logging_obj,
|
|
),
|
|
model=model,
|
|
custom_llm_provider="sagemaker",
|
|
logging_obj=logging_obj,
|
|
)
|
|
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=[],
|
|
api_key="",
|
|
original_response="first stream response received",
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return streaming_response
|
|
|
|
async def async_completion(
|
|
self,
|
|
messages: list,
|
|
model: str,
|
|
custom_prompt_dict: dict,
|
|
hf_model_name: Optional[str],
|
|
credentials,
|
|
aws_region_name: str,
|
|
encoding,
|
|
model_response: ModelResponse,
|
|
optional_params: dict,
|
|
logging_obj: Any,
|
|
data: dict,
|
|
model_id: Optional[str],
|
|
):
|
|
timeout = 300.0
|
|
async_handler = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.SAGEMAKER
|
|
)
|
|
|
|
async_transform_prompt = asyncify(self._transform_prompt)
|
|
|
|
data["inputs"] = await async_transform_prompt(
|
|
model=model,
|
|
messages=messages,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
hf_model_name=hf_model_name,
|
|
)
|
|
asyncified_prepare_request = asyncify(self._prepare_request)
|
|
prepared_request_args = {
|
|
"model": model,
|
|
"data": data,
|
|
"optional_params": optional_params,
|
|
"credentials": credentials,
|
|
"aws_region_name": aws_region_name,
|
|
}
|
|
|
|
prepared_request = await asyncified_prepare_request(**prepared_request_args)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=[],
|
|
api_key="",
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"api_base": prepared_request.url,
|
|
"headers": prepared_request.headers,
|
|
},
|
|
)
|
|
try:
|
|
if model_id is not None:
|
|
# Add model_id as InferenceComponentName header
|
|
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
|
|
prepared_request.headers.update(
|
|
{"X-Amzn-SageMaker-Inference-Componen": model_id}
|
|
)
|
|
# make async httpx post request here
|
|
try:
|
|
response = await async_handler.post(
|
|
url=prepared_request.url,
|
|
headers=prepared_request.headers, # type: ignore
|
|
json=data,
|
|
timeout=timeout,
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise SagemakerError(
|
|
status_code=response.status_code, message=response.text
|
|
)
|
|
except Exception as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=data["inputs"],
|
|
api_key="",
|
|
original_response=str(e),
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
raise e
|
|
except Exception as e:
|
|
error_message = f"{str(e)}"
|
|
if "Inference Component Name header is required" in error_message:
|
|
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
|
|
raise SagemakerError(status_code=500, message=error_message)
|
|
completion_response = response.json()
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=data["inputs"],
|
|
api_key="",
|
|
original_response=response,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## RESPONSE OBJECT
|
|
try:
|
|
if isinstance(completion_response, list):
|
|
completion_response_choices = completion_response[0]
|
|
else:
|
|
completion_response_choices = completion_response
|
|
completion_output = ""
|
|
if "generation" in completion_response_choices:
|
|
completion_output += completion_response_choices["generation"]
|
|
elif "generated_text" in completion_response_choices:
|
|
completion_output += completion_response_choices["generated_text"]
|
|
|
|
# check if the prompt template is part of output, if so - filter it out
|
|
if completion_output.startswith(data["inputs"]) and "<s>" in data["inputs"]:
|
|
completion_output = completion_output.replace(data["inputs"], "", 1)
|
|
|
|
model_response.choices[0].message.content = completion_output # type: ignore
|
|
except Exception:
|
|
raise SagemakerError(
|
|
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
|
status_code=500,
|
|
)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = len(encoding.encode(data["inputs"]))
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
)
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
return model_response
|
|
|
|
def embedding(
|
|
self,
|
|
model: str,
|
|
input: list,
|
|
model_response: EmbeddingResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
custom_prompt_dict={},
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
"""
|
|
Supports Huggingface Jumpstart embeddings like GPT-6B
|
|
"""
|
|
### BOTO3 INIT
|
|
import boto3
|
|
|
|
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
|
|
if aws_access_key_id is not None:
|
|
# uses auth params passed to completion
|
|
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
|
|
client = boto3.client(
|
|
service_name="sagemaker-runtime",
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
region_name=aws_region_name,
|
|
)
|
|
else:
|
|
# aws_access_key_id is None, assume user is trying to auth using env variables
|
|
# boto3 automaticaly reads env variables
|
|
|
|
# we need to read region name from env
|
|
# I assume majority of users use .env for auth
|
|
region_name = (
|
|
get_secret("AWS_REGION_NAME")
|
|
or aws_region_name # get region from config file if specified
|
|
or "us-west-2" # default to us-west-2 if region not specified
|
|
)
|
|
client = boto3.client(
|
|
service_name="sagemaker-runtime",
|
|
region_name=region_name,
|
|
)
|
|
|
|
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
|
inference_params = deepcopy(optional_params)
|
|
inference_params.pop("stream", None)
|
|
|
|
## Load Config
|
|
config = litellm.SagemakerConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in inference_params
|
|
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
|
|
#### HF EMBEDDING LOGIC
|
|
data = json.dumps({"text_inputs": input}).encode("utf-8")
|
|
|
|
## LOGGING
|
|
request_str = f"""
|
|
response = client.invoke_endpoint(
|
|
EndpointName={model},
|
|
ContentType="application/json",
|
|
Body={data}, # type: ignore
|
|
CustomAttributes="accept_eula=true",
|
|
)""" # type: ignore
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": data, "request_str": request_str},
|
|
)
|
|
## EMBEDDING CALL
|
|
try:
|
|
response = client.invoke_endpoint(
|
|
EndpointName=model,
|
|
ContentType="application/json",
|
|
Body=data,
|
|
CustomAttributes="accept_eula=true",
|
|
)
|
|
except Exception as e:
|
|
status_code = (
|
|
getattr(e, "response", {})
|
|
.get("ResponseMetadata", {})
|
|
.get("HTTPStatusCode", 500)
|
|
)
|
|
error_message = (
|
|
getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
|
|
)
|
|
raise SagemakerError(status_code=status_code, message=error_message)
|
|
|
|
response = json.loads(response["Body"].read().decode("utf8"))
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key="",
|
|
original_response=response,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
print_verbose(f"raw model_response: {response}")
|
|
if "embedding" not in response:
|
|
raise SagemakerError(
|
|
status_code=500, message="embedding not found in response"
|
|
)
|
|
embeddings = response["embedding"]
|
|
|
|
if not isinstance(embeddings, list):
|
|
raise SagemakerError(
|
|
status_code=422,
|
|
message=f"Response not in expected format - {embeddings}",
|
|
)
|
|
|
|
output_data = []
|
|
for idx, embedding in enumerate(embeddings):
|
|
output_data.append(
|
|
{"object": "embedding", "index": idx, "embedding": embedding}
|
|
)
|
|
|
|
model_response.object = "list"
|
|
model_response.data = output_data
|
|
model_response.model = model
|
|
|
|
input_tokens = 0
|
|
for text in input:
|
|
input_tokens += len(encoding.encode(text))
|
|
|
|
setattr(
|
|
model_response,
|
|
"usage",
|
|
Usage(
|
|
prompt_tokens=input_tokens,
|
|
completion_tokens=0,
|
|
total_tokens=input_tokens,
|
|
),
|
|
)
|
|
|
|
return model_response
|
|
|
|
|
|
def get_response_stream_shape():
|
|
global _response_stream_shape_cache
|
|
if _response_stream_shape_cache is None:
|
|
|
|
from botocore.loaders import Loader
|
|
from botocore.model import ServiceModel
|
|
|
|
loader = Loader()
|
|
sagemaker_service_dict = loader.load_service_model(
|
|
"sagemaker-runtime", "service-2"
|
|
)
|
|
sagemaker_service_model = ServiceModel(sagemaker_service_dict)
|
|
_response_stream_shape_cache = sagemaker_service_model.shape_for(
|
|
"InvokeEndpointWithResponseStreamOutput"
|
|
)
|
|
return _response_stream_shape_cache
|
|
|
|
|
|
class AWSEventStreamDecoder:
|
|
def __init__(self, model: str, is_messages_api: Optional[bool] = None) -> None:
|
|
from botocore.parsers import EventStreamJSONParser
|
|
|
|
self.model = model
|
|
self.parser = EventStreamJSONParser()
|
|
self.content_blocks: List = []
|
|
self.is_messages_api = is_messages_api
|
|
|
|
def _chunk_parser_messages_api(
|
|
self, chunk_data: dict
|
|
) -> StreamingChatCompletionChunk:
|
|
|
|
openai_chunk = StreamingChatCompletionChunk(**chunk_data)
|
|
|
|
return openai_chunk
|
|
|
|
def _chunk_parser(self, chunk_data: dict) -> GChunk:
|
|
verbose_logger.debug("in sagemaker chunk parser, chunk_data %s", chunk_data)
|
|
_token = chunk_data.get("token", {}) or {}
|
|
_index = chunk_data.get("index", None) or 0
|
|
is_finished = False
|
|
finish_reason = ""
|
|
|
|
_text = _token.get("text", "")
|
|
if _text == "<|endoftext|>":
|
|
return GChunk(
|
|
text="",
|
|
index=_index,
|
|
is_finished=True,
|
|
finish_reason="stop",
|
|
usage=None,
|
|
)
|
|
|
|
return GChunk(
|
|
text=_text,
|
|
index=_index,
|
|
is_finished=is_finished,
|
|
finish_reason=finish_reason,
|
|
usage=None,
|
|
)
|
|
|
|
def iter_bytes(
|
|
self, iterator: Iterator[bytes]
|
|
) -> Iterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
|
|
"""Given an iterator that yields lines, iterate over it & yield every event encountered"""
|
|
from botocore.eventstream import EventStreamBuffer
|
|
|
|
event_stream_buffer = EventStreamBuffer()
|
|
accumulated_json = ""
|
|
|
|
for chunk in iterator:
|
|
event_stream_buffer.add_data(chunk)
|
|
for event in event_stream_buffer:
|
|
message = self._parse_message_from_event(event)
|
|
if message:
|
|
# remove data: prefix and "\n\n" at the end
|
|
message = message.replace("data:", "").replace("\n\n", "")
|
|
|
|
# Accumulate JSON data
|
|
accumulated_json += message
|
|
|
|
# Try to parse the accumulated JSON
|
|
try:
|
|
_data = json.loads(accumulated_json)
|
|
if self.is_messages_api:
|
|
yield self._chunk_parser_messages_api(chunk_data=_data)
|
|
else:
|
|
yield self._chunk_parser(chunk_data=_data)
|
|
# Reset accumulated_json after successful parsing
|
|
accumulated_json = ""
|
|
except json.JSONDecodeError:
|
|
# If it's not valid JSON yet, continue to the next event
|
|
continue
|
|
|
|
# Handle any remaining data after the iterator is exhausted
|
|
if accumulated_json:
|
|
try:
|
|
_data = json.loads(accumulated_json)
|
|
if self.is_messages_api:
|
|
yield self._chunk_parser_messages_api(chunk_data=_data)
|
|
else:
|
|
yield self._chunk_parser(chunk_data=_data)
|
|
except json.JSONDecodeError:
|
|
# Handle or log any unparseable data at the end
|
|
verbose_logger.error(
|
|
f"Warning: Unparseable JSON data remained: {accumulated_json}"
|
|
)
|
|
yield None
|
|
|
|
async def aiter_bytes(
|
|
self, iterator: AsyncIterator[bytes]
|
|
) -> AsyncIterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
|
|
"""Given an async iterator that yields lines, iterate over it & yield every event encountered"""
|
|
from botocore.eventstream import EventStreamBuffer
|
|
|
|
event_stream_buffer = EventStreamBuffer()
|
|
accumulated_json = ""
|
|
|
|
async for chunk in iterator:
|
|
event_stream_buffer.add_data(chunk)
|
|
for event in event_stream_buffer:
|
|
message = self._parse_message_from_event(event)
|
|
if message:
|
|
verbose_logger.debug("sagemaker parsed chunk bytes %s", message)
|
|
# remove data: prefix and "\n\n" at the end
|
|
message = message.replace("data:", "").replace("\n\n", "")
|
|
|
|
# Accumulate JSON data
|
|
accumulated_json += message
|
|
|
|
# Try to parse the accumulated JSON
|
|
try:
|
|
_data = json.loads(accumulated_json)
|
|
if self.is_messages_api:
|
|
yield self._chunk_parser_messages_api(chunk_data=_data)
|
|
else:
|
|
yield self._chunk_parser(chunk_data=_data)
|
|
# Reset accumulated_json after successful parsing
|
|
accumulated_json = ""
|
|
except json.JSONDecodeError:
|
|
# If it's not valid JSON yet, continue to the next event
|
|
continue
|
|
|
|
# Handle any remaining data after the iterator is exhausted
|
|
if accumulated_json:
|
|
try:
|
|
_data = json.loads(accumulated_json)
|
|
if self.is_messages_api:
|
|
yield self._chunk_parser_messages_api(chunk_data=_data)
|
|
else:
|
|
yield self._chunk_parser(chunk_data=_data)
|
|
except json.JSONDecodeError:
|
|
# Handle or log any unparseable data at the end
|
|
verbose_logger.error(
|
|
f"Warning: Unparseable JSON data remained: {accumulated_json}"
|
|
)
|
|
yield None
|
|
|
|
def _parse_message_from_event(self, event) -> Optional[str]:
|
|
response_dict = event.to_response_dict()
|
|
parsed_response = self.parser.parse(response_dict, get_response_stream_shape())
|
|
|
|
if response_dict["status_code"] != 200:
|
|
raise ValueError(f"Bad response code, expected 200: {response_dict}")
|
|
|
|
if "chunk" in parsed_response:
|
|
chunk = parsed_response.get("chunk")
|
|
if not chunk:
|
|
return None
|
|
return chunk.get("bytes").decode() # type: ignore[no-any-return]
|
|
else:
|
|
chunk = response_dict.get("body")
|
|
if not chunk:
|
|
return None
|
|
|
|
return chunk.decode() # type: ignore[no-any-return]
|