litellm-mirror/litellm/router_utils/batch_utils.py
Krish Dholakia d57be47b0f
Litellm ruff linting enforcement (#5992)
* ci(config.yml): add a 'check_code_quality' step

Addresses https://github.com/BerriAI/litellm/issues/5991

* ci(config.yml): check why circle ci doesn't pick up this test

* ci(config.yml): fix to run 'check_code_quality' tests

* fix(__init__.py): fix unprotected import

* fix(__init__.py): don't remove unused imports

* build(ruff.toml): update ruff.toml to ignore unused imports

* fix: fix: ruff + pyright - fix linting + type-checking errors

* fix: fix linting errors

* fix(lago.py): fix module init error

* fix: fix linting errors

* ci(config.yml): cd into correct dir for checks

* fix(proxy_server.py): fix linting error

* fix(utils.py): fix bare except

causes ruff linting errors

* fix: ruff - fix remaining linting errors

* fix(clickhouse.py): use standard logging object

* fix(__init__.py): fix unprotected import

* fix: ruff - fix linting errors

* fix: fix linting errors

* ci(config.yml): cleanup code qa step (formatting handled in local_testing)

* fix(_health_endpoints.py): fix ruff linting errors

* ci(config.yml): just use ruff in check_code_quality pipeline for now

* build(custom_guardrail.py): include missing file

* style(embedding_handler.py): fix ruff check
2024-10-01 19:44:20 -04:00

62 lines
2.1 KiB
Python

import io
import json
from typing import IO, Optional, Tuple, Union
class InMemoryFile(io.BytesIO):
def __init__(self, content: bytes, name: str):
super().__init__(content)
self.name = name
def replace_model_in_jsonl(
file_content: Union[bytes, Tuple[str, bytes, str]], new_model_name: str
) -> Optional[InMemoryFile]:
try:
# Decode the bytes to a string and split into lines
# If file_content is a file-like object, read the bytes
if hasattr(file_content, "read"):
file_content_bytes = file_content.read() # type: ignore
elif isinstance(file_content, tuple):
file_content_bytes = file_content[1]
else:
file_content_bytes = file_content
# Decode the bytes to a string and split into lines
if isinstance(file_content_bytes, bytes):
file_content_str = file_content_bytes.decode("utf-8")
else:
file_content_str = file_content_bytes
lines = file_content_str.splitlines()
modified_lines = []
for line in lines:
# Parse each line as a JSON object
json_object = json.loads(line.strip())
# Replace the model name if it exists
if "body" in json_object:
json_object["body"]["model"] = new_model_name
# Convert the modified JSON object back to a string
modified_lines.append(json.dumps(json_object))
# Reassemble the modified lines and return as bytes
modified_file_content = "\n".join(modified_lines).encode("utf-8")
return InMemoryFile(modified_file_content, name="modified_file.jsonl") # type: ignore
except (json.JSONDecodeError, UnicodeDecodeError, TypeError):
return None
def _get_router_metadata_variable_name(function_name) -> str:
"""
Helper to return what the "metadata" field should be called in the request data
For all /thread or /assistant endpoints we need to call this "litellm_metadata"
For ALL other endpoints we call this "metadata
"""
if "batch" in function_name:
return "litellm_metadata"
else:
return "metadata"