mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
119 lines
3.5 KiB
Python
119 lines
3.5 KiB
Python
import os, types
|
|
import json
|
|
from enum import Enum
|
|
import requests, copy # type: ignore
|
|
import time
|
|
from typing import Callable, Optional, List
|
|
from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamWrapper
|
|
import litellm
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
|
from .base import BaseLLM
|
|
import httpx # type: ignore
|
|
|
|
|
|
class TritonError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST",
|
|
url="https://api.anthropic.com/v1/messages", # using anthropic api base since httpx requires a url
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class TritonChatCompletion(BaseLLM):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
async def aembedding(
|
|
self,
|
|
data: dict,
|
|
model_response: litellm.utils.EmbeddingResponse,
|
|
api_base: str,
|
|
logging_obj=None,
|
|
api_key: Optional[str] = None,
|
|
):
|
|
|
|
async_handler = AsyncHTTPHandler(
|
|
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
|
)
|
|
|
|
response = await async_handler.post(url=api_base, data=json.dumps(data))
|
|
|
|
if response.status_code != 200:
|
|
raise TritonError(status_code=response.status_code, message=response.text)
|
|
|
|
_text_response = response.text
|
|
|
|
logging_obj.post_call(original_response=_text_response)
|
|
|
|
_json_response = response.json()
|
|
|
|
_outputs = _json_response["outputs"]
|
|
_output_data = _outputs[0]["data"]
|
|
_embedding_output = {
|
|
"object": "embedding",
|
|
"index": 0,
|
|
"embedding": _output_data,
|
|
}
|
|
|
|
model_response.model = _json_response.get("model_name", "None")
|
|
model_response.data = [_embedding_output]
|
|
|
|
return model_response
|
|
|
|
def embedding(
|
|
self,
|
|
model: str,
|
|
input: list,
|
|
timeout: float,
|
|
api_base: str,
|
|
model_response: litellm.utils.EmbeddingResponse,
|
|
api_key: Optional[str] = None,
|
|
logging_obj=None,
|
|
optional_params=None,
|
|
client=None,
|
|
aembedding=None,
|
|
):
|
|
data_for_triton = {
|
|
"inputs": [
|
|
{
|
|
"name": "input_text",
|
|
"shape": [1],
|
|
"datatype": "BYTES",
|
|
"data": input,
|
|
}
|
|
]
|
|
}
|
|
|
|
## LOGGING
|
|
|
|
curl_string = f"curl {api_base} -X POST -H 'Content-Type: application/json' -d '{data_for_triton}'"
|
|
|
|
logging_obj.pre_call(
|
|
input="",
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": curl_string,
|
|
},
|
|
)
|
|
|
|
if aembedding == True:
|
|
response = self.aembedding(
|
|
data=data_for_triton,
|
|
model_response=model_response,
|
|
logging_obj=logging_obj,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
)
|
|
return response
|
|
else:
|
|
raise Exception(
|
|
"Only async embedding supported for triton, please use litellm.aembedding() for now"
|
|
)
|