litellm-mirror/litellm/integrations/slack_alerting.py
Ishaan Jaff d42c3309ec
Merge pull request #3338 from BerriAI/litellm_alerting_sort_latencies
Fix - slack alerting show deployment latencies in sorted order
2024-04-27 18:40:07 -07:00

541 lines
21 KiB
Python

#### What this does ####
# Class for sending Slack Alerts #
import dotenv, os
dotenv.load_dotenv() # Loading env variables using dotenv
import copy
import traceback
from litellm._logging import verbose_logger, verbose_proxy_logger
import litellm
from typing import List, Literal, Any, Union, Optional, Dict
from litellm.caching import DualCache
import asyncio
import aiohttp
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
import datetime
class SlackAlerting:
# Class variables or attributes
def __init__(
self,
alerting_threshold: float = 300,
alerting: Optional[List] = [],
alert_types: Optional[
List[
Literal[
"llm_exceptions",
"llm_too_slow",
"llm_requests_hanging",
"budget_alerts",
"db_exceptions",
]
]
] = [
"llm_exceptions",
"llm_too_slow",
"llm_requests_hanging",
"budget_alerts",
"db_exceptions",
],
alert_to_webhook_url: Optional[
Dict
] = None, # if user wants to separate alerts to diff channels
):
self.alerting_threshold = alerting_threshold
self.alerting = alerting
self.alert_types = alert_types
self.internal_usage_cache = DualCache()
self.async_http_handler = AsyncHTTPHandler()
self.alert_to_webhook_url = alert_to_webhook_url
self.langfuse_logger = None
try:
from litellm.integrations.langfuse import LangFuseLogger
self.langfuse_logger = LangFuseLogger(
os.getenv("LANGFUSE_PUBLIC_KEY"),
os.getenv("LANGFUSE_SECRET_KEY"),
flush_interval=1,
)
except:
pass
pass
def update_values(
self,
alerting: Optional[List] = None,
alerting_threshold: Optional[float] = None,
alert_types: Optional[List] = None,
alert_to_webhook_url: Optional[Dict] = None,
):
if alerting is not None:
self.alerting = alerting
if alerting_threshold is not None:
self.alerting_threshold = alerting_threshold
if alert_types is not None:
self.alert_types = alert_types
if alert_to_webhook_url is not None:
# update the dict
if self.alert_to_webhook_url is None:
self.alert_to_webhook_url = alert_to_webhook_url
else:
self.alert_to_webhook_url.update(alert_to_webhook_url)
async def deployment_in_cooldown(self):
pass
async def deployment_removed_from_cooldown(self):
pass
def _all_possible_alert_types(self):
# used by the UI to show all supported alert types
# Note: This is not the alerts the user has configured, instead it's all possible alert types a user can select
return [
"llm_exceptions",
"llm_too_slow",
"llm_requests_hanging",
"budget_alerts",
"db_exceptions",
]
def _add_langfuse_trace_id_to_alert(
self,
request_info: str,
request_data: Optional[dict] = None,
kwargs: Optional[dict] = None,
type: Literal["hanging_request", "slow_response"] = "hanging_request",
start_time: Optional[datetime.datetime] = None,
end_time: Optional[datetime.datetime] = None,
):
import uuid
# For now: do nothing as we're debugging why this is not working as expected
if request_data is not None:
trace_id = request_data.get("metadata", {}).get(
"trace_id", None
) # get langfuse trace id
if trace_id is None:
trace_id = "litellm-alert-trace-" + str(uuid.uuid4())
request_data["metadata"]["trace_id"] = trace_id
elif kwargs is not None:
_litellm_params = kwargs.get("litellm_params", {})
trace_id = _litellm_params.get("metadata", {}).get(
"trace_id", None
) # get langfuse trace id
if trace_id is None:
trace_id = "litellm-alert-trace-" + str(uuid.uuid4())
_litellm_params["metadata"]["trace_id"] = trace_id
# Log hanging request as an error on langfuse
if type == "hanging_request":
if self.langfuse_logger is not None:
_logging_kwargs = copy.deepcopy(request_data)
if _logging_kwargs is None:
_logging_kwargs = {}
_logging_kwargs["litellm_params"] = {}
request_data = request_data or {}
_logging_kwargs["litellm_params"]["metadata"] = request_data.get(
"metadata", {}
)
# log to langfuse in a separate thread
import threading
threading.Thread(
target=self.langfuse_logger.log_event,
args=(
_logging_kwargs,
None,
start_time,
end_time,
None,
print,
"ERROR",
"Requests is hanging",
),
).start()
_langfuse_host = os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com")
_langfuse_project_id = os.environ.get("LANGFUSE_PROJECT_ID")
# langfuse urls look like: https://us.cloud.langfuse.com/project/************/traces/litellm-alert-trace-ididi9dk-09292-************
_langfuse_url = (
f"{_langfuse_host}/project/{_langfuse_project_id}/traces/{trace_id}"
)
request_info += f"\n🪢 Langfuse Trace: {_langfuse_url}"
return request_info
def _response_taking_too_long_callback(
self,
kwargs, # kwargs to completion
start_time,
end_time, # start/end time
):
try:
time_difference = end_time - start_time
# Convert the timedelta to float (in seconds)
time_difference_float = time_difference.total_seconds()
litellm_params = kwargs.get("litellm_params", {})
model = kwargs.get("model", "")
api_base = litellm.get_api_base(model=model, optional_params=litellm_params)
messages = kwargs.get("messages", None)
# if messages does not exist fallback to "input"
if messages is None:
messages = kwargs.get("input", None)
# only use first 100 chars for alerting
_messages = str(messages)[:100]
return time_difference_float, model, api_base, _messages
except Exception as e:
raise e
def _get_deployment_latencies_to_alert(self, metadata=None):
if metadata is None:
return None
if "_latency_per_deployment" in metadata:
# Translate model_id to -> api_base
# _latency_per_deployment is a dictionary that looks like this:
"""
_latency_per_deployment: {
api_base: 0.01336697916666667
}
"""
_message_to_send = ""
_deployment_latencies = metadata["_latency_per_deployment"]
if len(_deployment_latencies) == 0:
return None
try:
# try sorting deployments by latency
_deployment_latencies = sorted(
_deployment_latencies.items(), key=lambda x: x[1]
)
_deployment_latencies = dict(_deployment_latencies)
except:
pass
for api_base, latency in _deployment_latencies.items():
_message_to_send += f"\n{api_base}: {round(latency,2)}s"
_message_to_send = "```" + _message_to_send + "```"
return _message_to_send
async def response_taking_too_long_callback(
self,
kwargs, # kwargs to completion
completion_response, # response from completion
start_time,
end_time, # start/end time
):
if self.alerting is None or self.alert_types is None:
return
time_difference_float, model, api_base, messages = (
self._response_taking_too_long_callback(
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
)
request_info = f"\nRequest Model: `{model}`\nAPI Base: `{api_base}`\nMessages: `{messages}`"
slow_message = f"`Responses are slow - {round(time_difference_float,2)}s response time > Alerting threshold: {self.alerting_threshold}s`"
if time_difference_float > self.alerting_threshold:
if "langfuse" in litellm.success_callback:
request_info = self._add_langfuse_trace_id_to_alert(
request_info=request_info, kwargs=kwargs, type="slow_response"
)
# add deployment latencies to alert
if (
kwargs is not None
and "litellm_params" in kwargs
and "metadata" in kwargs["litellm_params"]
):
_metadata = kwargs["litellm_params"]["metadata"]
_deployment_latency_map = self._get_deployment_latencies_to_alert(
metadata=_metadata
)
if _deployment_latency_map is not None:
request_info += (
f"\nAvailable Deployment Latencies\n{_deployment_latency_map}"
)
await self.send_alert(
message=slow_message + request_info,
level="Low",
alert_type="llm_too_slow",
)
async def log_failure_event(self, original_exception: Exception):
pass
async def response_taking_too_long(
self,
start_time: Optional[datetime.datetime] = None,
end_time: Optional[datetime.datetime] = None,
type: Literal["hanging_request", "slow_response"] = "hanging_request",
request_data: Optional[dict] = None,
):
if self.alerting is None or self.alert_types is None:
return
if request_data is not None:
model = request_data.get("model", "")
messages = request_data.get("messages", None)
if messages is None:
# if messages does not exist fallback to "input"
messages = request_data.get("input", None)
# try casting messages to str and get the first 100 characters, else mark as None
try:
messages = str(messages)
messages = messages[:100]
except:
messages = ""
request_info = f"\nRequest Model: `{model}`\nMessages: `{messages}`"
else:
request_info = ""
if type == "hanging_request":
await asyncio.sleep(
self.alerting_threshold
) # Set it to 5 minutes - i'd imagine this might be different for streaming, non-streaming, non-completion (embedding + img) requests
if (
request_data is not None
and request_data.get("litellm_status", "") != "success"
and request_data.get("litellm_status", "") != "fail"
):
if request_data.get("deployment", None) is not None and isinstance(
request_data["deployment"], dict
):
_api_base = litellm.get_api_base(
model=model,
optional_params=request_data["deployment"].get(
"litellm_params", {}
),
)
if _api_base is None:
_api_base = ""
request_info += f"\nAPI Base: {_api_base}"
elif request_data.get("metadata", None) is not None and isinstance(
request_data["metadata"], dict
):
# In hanging requests sometime it has not made it to the point where the deployment is passed to the `request_data``
# in that case we fallback to the api base set in the request metadata
_metadata = request_data["metadata"]
_api_base = _metadata.get("api_base", "")
if _api_base is None:
_api_base = ""
request_info += f"\nAPI Base: `{_api_base}`"
# only alert hanging responses if they have not been marked as success
alerting_message = (
f"`Requests are hanging - {self.alerting_threshold}s+ request time`"
)
if "langfuse" in litellm.success_callback:
request_info = self._add_langfuse_trace_id_to_alert(
request_info=request_info,
request_data=request_data,
type="hanging_request",
start_time=start_time,
end_time=end_time,
)
# add deployment latencies to alert
_deployment_latency_map = self._get_deployment_latencies_to_alert(
metadata=request_data.get("metadata", {})
)
if _deployment_latency_map is not None:
request_info += f"\nDeployment Latencies\n{_deployment_latency_map}"
await self.send_alert(
message=alerting_message + request_info,
level="Medium",
alert_type="llm_requests_hanging",
)
async def budget_alerts(
self,
type: Literal[
"token_budget",
"user_budget",
"user_and_proxy_budget",
"failed_budgets",
"failed_tracking",
"projected_limit_exceeded",
],
user_max_budget: float,
user_current_spend: float,
user_info=None,
error_message="",
):
if self.alerting is None or self.alert_types is None:
# do nothing if alerting is not switched on
return
if "budget_alerts" not in self.alert_types:
return
_id: str = "default_id" # used for caching
if type == "user_and_proxy_budget":
user_info = dict(user_info)
user_id = user_info["user_id"]
_id = user_id
max_budget = user_info["max_budget"]
spend = user_info["spend"]
user_email = user_info["user_email"]
user_info = f"""\nUser ID: {user_id}\nMax Budget: ${max_budget}\nSpend: ${spend}\nUser Email: {user_email}"""
elif type == "token_budget":
token_info = dict(user_info)
token = token_info["token"]
_id = token
spend = token_info["spend"]
max_budget = token_info["max_budget"]
user_id = token_info["user_id"]
user_info = f"""\nToken: {token}\nSpend: ${spend}\nMax Budget: ${max_budget}\nUser ID: {user_id}"""
elif type == "failed_tracking":
user_id = str(user_info)
_id = user_id
user_info = f"\nUser ID: {user_id}\n Error {error_message}"
message = "Failed Tracking Cost for" + user_info
await self.send_alert(
message=message, level="High", alert_type="budget_alerts"
)
return
elif type == "projected_limit_exceeded" and user_info is not None:
"""
Input variables:
user_info = {
"key_alias": key_alias,
"projected_spend": projected_spend,
"projected_exceeded_date": projected_exceeded_date,
}
user_max_budget=soft_limit,
user_current_spend=new_spend
"""
message = f"""\n🚨 `ProjectedLimitExceededError` 💸\n\n`Key Alias:` {user_info["key_alias"]} \n`Expected Day of Error`: {user_info["projected_exceeded_date"]} \n`Current Spend`: {user_current_spend} \n`Projected Spend at end of month`: {user_info["projected_spend"]} \n`Soft Limit`: {user_max_budget}"""
await self.send_alert(
message=message, level="High", alert_type="budget_alerts"
)
return
else:
user_info = str(user_info)
# percent of max_budget left to spend
if user_max_budget > 0:
percent_left = (user_max_budget - user_current_spend) / user_max_budget
else:
percent_left = 0
verbose_proxy_logger.debug(
f"Budget Alerts: Percent left: {percent_left} for {user_info}"
)
## PREVENTITIVE ALERTING ## - https://github.com/BerriAI/litellm/issues/2727
# - Alert once within 28d period
# - Cache this information
# - Don't re-alert, if alert already sent
_cache: DualCache = self.internal_usage_cache
# check if crossed budget
if user_current_spend >= user_max_budget:
verbose_proxy_logger.debug("Budget Crossed for %s", user_info)
message = "Budget Crossed for" + user_info
result = await _cache.async_get_cache(key=message)
if result is None:
await self.send_alert(
message=message, level="High", alert_type="budget_alerts"
)
await _cache.async_set_cache(key=message, value="SENT", ttl=2419200)
return
# check if 5% of max budget is left
if percent_left <= 0.05:
message = "5% budget left for" + user_info
cache_key = "alerting:{}".format(_id)
result = await _cache.async_get_cache(key=cache_key)
if result is None:
await self.send_alert(
message=message, level="Medium", alert_type="budget_alerts"
)
await _cache.async_set_cache(key=cache_key, value="SENT", ttl=2419200)
return
# check if 15% of max budget is left
if percent_left <= 0.15:
message = "15% budget left for" + user_info
result = await _cache.async_get_cache(key=message)
if result is None:
await self.send_alert(
message=message, level="Low", alert_type="budget_alerts"
)
await _cache.async_set_cache(key=message, value="SENT", ttl=2419200)
return
return
async def send_alert(
self,
message: str,
level: Literal["Low", "Medium", "High"],
alert_type: Literal[
"llm_exceptions",
"llm_too_slow",
"llm_requests_hanging",
"budget_alerts",
"db_exceptions",
],
):
"""
Alerting based on thresholds: - https://github.com/BerriAI/litellm/issues/1298
- Responses taking too long
- Requests are hanging
- Calls are failing
- DB Read/Writes are failing
- Proxy Close to max budget
- Key Close to max budget
Parameters:
level: str - Low|Medium|High - if calls might fail (Medium) or are failing (High); Currently, no alerts would be 'Low'.
message: str - what is the alert about
"""
if self.alerting is None:
return
from datetime import datetime
import json
# Get the current timestamp
current_time = datetime.now().strftime("%H:%M:%S")
_proxy_base_url = os.getenv("PROXY_BASE_URL", None)
formatted_message = (
f"Level: `{level}`\nTimestamp: `{current_time}`\n\nMessage: {message}"
)
if _proxy_base_url is not None:
formatted_message += f"\n\nProxy URL: `{_proxy_base_url}`"
# check if we find the slack webhook url in self.alert_to_webhook_url
if (
self.alert_to_webhook_url is not None
and alert_type in self.alert_to_webhook_url
):
slack_webhook_url = self.alert_to_webhook_url[alert_type]
else:
slack_webhook_url = os.getenv("SLACK_WEBHOOK_URL", None)
if slack_webhook_url is None:
raise Exception("Missing SLACK_WEBHOOK_URL from environment")
payload = {"text": formatted_message}
headers = {"Content-type": "application/json"}
response = await self.async_http_handler.post(
url=slack_webhook_url,
headers=headers,
data=json.dumps(payload),
)
if response.status_code == 200:
pass
else:
print("Error sending slack alert. Error=", response.text) # noqa