mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* build(pyproject.toml): add new dev dependencies - for type checking * build: reformat files to fit black * ci: reformat to fit black * ci(test-litellm.yml): make tests run clear * build(pyproject.toml): add ruff * fix: fix ruff checks * build(mypy/): fix mypy linting errors * fix(hashicorp_secret_manager.py): fix passing cert for tls auth * build(mypy/): resolve all mypy errors * test: update test * fix: fix black formatting * build(pre-commit-config.yaml): use poetry run black * fix(proxy_server.py): fix linting error * fix: fix ruff safe representation error
98 lines
3.5 KiB
Python
98 lines
3.5 KiB
Python
"""
|
|
Transformation logic from OpenAI /v1/embeddings format to Azure AI Cohere's /v1/embed.
|
|
|
|
Why separate file? Make it easy to see how transformation works
|
|
|
|
Convers
|
|
- Cohere request format
|
|
|
|
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
|
|
"""
|
|
|
|
from typing import List, Optional, Tuple
|
|
|
|
from litellm.types.llms.azure_ai import ImageEmbeddingInput, ImageEmbeddingRequest
|
|
from litellm.types.llms.openai import EmbeddingCreateParams
|
|
from litellm.types.utils import EmbeddingResponse, Usage
|
|
from litellm.utils import is_base64_encoded
|
|
|
|
|
|
class AzureAICohereConfig:
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def _map_azure_model_group(self, model: str) -> str:
|
|
if model == "offer-cohere-embed-multili-paygo":
|
|
return "Cohere-embed-v3-multilingual"
|
|
elif model == "offer-cohere-embed-english-paygo":
|
|
return "Cohere-embed-v3-english"
|
|
|
|
return model
|
|
|
|
def _transform_request_image_embeddings(
|
|
self, input: List[str], optional_params: dict
|
|
) -> ImageEmbeddingRequest:
|
|
"""
|
|
Assume all str in list is base64 encoded string
|
|
"""
|
|
image_input: List[ImageEmbeddingInput] = []
|
|
for i in input:
|
|
embedding_input = ImageEmbeddingInput(image=i)
|
|
image_input.append(embedding_input)
|
|
return ImageEmbeddingRequest(input=image_input, **optional_params)
|
|
|
|
def _transform_request(
|
|
self, input: List[str], optional_params: dict, model: str
|
|
) -> Tuple[ImageEmbeddingRequest, EmbeddingCreateParams, List[int]]:
|
|
"""
|
|
Return the list of input to `/image/embeddings`, `/v1/embeddings`, list of image_embedding_idx for recombination
|
|
"""
|
|
image_embeddings: List[str] = []
|
|
image_embedding_idx: List[int] = []
|
|
for idx, i in enumerate(input):
|
|
"""
|
|
- is base64 -> route to image embeddings
|
|
- is ImageEmbeddingInput -> route to image embeddings
|
|
- else -> route to `/v1/embeddings`
|
|
"""
|
|
if is_base64_encoded(i):
|
|
image_embeddings.append(i)
|
|
image_embedding_idx.append(idx)
|
|
|
|
## REMOVE IMAGE EMBEDDINGS FROM input list
|
|
filtered_input = [
|
|
item for idx, item in enumerate(input) if idx not in image_embedding_idx
|
|
]
|
|
|
|
v1_embeddings_request = EmbeddingCreateParams(
|
|
input=filtered_input, model=model, **optional_params
|
|
)
|
|
image_embeddings_request = self._transform_request_image_embeddings(
|
|
input=image_embeddings, optional_params=optional_params
|
|
)
|
|
|
|
return image_embeddings_request, v1_embeddings_request, image_embedding_idx
|
|
|
|
def _transform_response(self, response: EmbeddingResponse) -> EmbeddingResponse:
|
|
additional_headers: Optional[dict] = response._hidden_params.get(
|
|
"additional_headers"
|
|
)
|
|
if additional_headers:
|
|
# CALCULATE USAGE
|
|
input_tokens: Optional[str] = additional_headers.get(
|
|
"llm_provider-num_tokens"
|
|
)
|
|
if input_tokens:
|
|
if response.usage:
|
|
response.usage.prompt_tokens = int(input_tokens)
|
|
else:
|
|
response.usage = Usage(prompt_tokens=int(input_tokens))
|
|
|
|
# SET MODEL
|
|
base_model: Optional[str] = additional_headers.get(
|
|
"llm_provider-azureml-model-group"
|
|
)
|
|
if base_model:
|
|
response.model = self._map_azure_model_group(base_model)
|
|
|
|
return response
|