litellm-mirror/litellm/llms/base_llm/responses/transformation.py
Krish Dholakia d7b294dd0a build(pyproject.toml): add new dev dependencies - for type checking (#9631)
* build(pyproject.toml): add new dev dependencies - for type checking

* build: reformat files to fit black

* ci: reformat to fit black

* ci(test-litellm.yml): make tests run clear

* build(pyproject.toml): add ruff

* fix: fix ruff checks

* build(mypy/): fix mypy linting errors

* fix(hashicorp_secret_manager.py): fix passing cert for tls auth

* build(mypy/): resolve all mypy errors

* test: update test

* fix: fix black formatting

* build(pre-commit-config.yaml): use poetry run black

* fix(proxy_server.py): fix linting error

* fix: fix ruff safe representation error
2025-03-29 11:02:13 -07:00

140 lines
3.5 KiB
Python

import types
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Dict, Optional, Union
import httpx
from litellm.types.llms.openai import (
ResponseInputParam,
ResponsesAPIOptionalRequestParams,
ResponsesAPIResponse,
ResponsesAPIStreamingResponse,
)
from litellm.types.router import GenericLiteLLMParams
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
from ..chat.transformation import BaseLLMException as _BaseLLMException
LiteLLMLoggingObj = _LiteLLMLoggingObj
BaseLLMException = _BaseLLMException
else:
LiteLLMLoggingObj = Any
BaseLLMException = Any
class BaseResponsesAPIConfig(ABC):
def __init__(self):
pass
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not k.startswith("_abc")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
@abstractmethod
def get_supported_openai_params(self, model: str) -> list:
pass
@abstractmethod
def map_openai_params(
self,
response_api_optional_params: ResponsesAPIOptionalRequestParams,
model: str,
drop_params: bool,
) -> Dict:
pass
@abstractmethod
def validate_environment(
self,
headers: dict,
model: str,
api_key: Optional[str] = None,
) -> dict:
return {}
@abstractmethod
def get_complete_url(
self,
api_base: Optional[str],
model: str,
stream: Optional[bool] = None,
) -> str:
"""
OPTIONAL
Get the complete url for the request
Some providers need `model` in `api_base`
"""
if api_base is None:
raise ValueError("api_base is required")
return api_base
@abstractmethod
def transform_responses_api_request(
self,
model: str,
input: Union[str, ResponseInputParam],
response_api_optional_request_params: Dict,
litellm_params: GenericLiteLLMParams,
headers: dict,
) -> Dict:
pass
@abstractmethod
def transform_response_api_response(
self,
model: str,
raw_response: httpx.Response,
logging_obj: LiteLLMLoggingObj,
) -> ResponsesAPIResponse:
pass
@abstractmethod
def transform_streaming_response(
self,
model: str,
parsed_chunk: dict,
logging_obj: LiteLLMLoggingObj,
) -> ResponsesAPIStreamingResponse:
"""
Transform a parsed streaming response chunk into a ResponsesAPIStreamingResponse
"""
pass
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
from ..chat.transformation import BaseLLMException
raise BaseLLMException(
status_code=status_code,
message=error_message,
headers=headers,
)
def should_fake_stream(
self,
model: Optional[str],
stream: Optional[bool],
custom_llm_provider: Optional[str] = None,
) -> bool:
"""Returns True if litellm should fake a stream for the given model and stream value"""
return False