litellm-mirror/litellm/llms/databricks/embed/transformation.py
Krish Dholakia d7b294dd0a build(pyproject.toml): add new dev dependencies - for type checking (#9631)
* build(pyproject.toml): add new dev dependencies - for type checking

* build: reformat files to fit black

* ci: reformat to fit black

* ci(test-litellm.yml): make tests run clear

* build(pyproject.toml): add ruff

* fix: fix ruff checks

* build(mypy/): fix mypy linting errors

* fix(hashicorp_secret_manager.py): fix passing cert for tls auth

* build(mypy/): resolve all mypy errors

* test: update test

* fix: fix black formatting

* build(pre-commit-config.yaml): use poetry run black

* fix(proxy_server.py): fix linting error

* fix: fix ruff safe representation error
2025-03-29 11:02:13 -07:00

48 lines
1.4 KiB
Python

"""
Translates from OpenAI's `/v1/embeddings` to Databricks' `/embeddings`
"""
import types
from typing import Optional
class DatabricksEmbeddingConfig:
"""
Reference: https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/api-reference#--embedding-task
"""
instruction: Optional[
str
] = None # An optional instruction to pass to the embedding model. BGE Authors recommend 'Represent this sentence for searching relevant passages:' for retrieval queries
def __init__(self, instruction: Optional[str] = None) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(
self,
): # no optional openai embedding params supported
return []
def map_openai_params(self, non_default_params: dict, optional_params: dict):
return optional_params