litellm-mirror/litellm/proxy/auth/auth_checks.py

569 lines
20 KiB
Python

# What is this?
## Common auth checks between jwt + key based auth
"""
Got Valid Token from Cache, DB
Run checks for:
1. If user can call model
2. If user is in budget
3. If end_user ('user' passed to /chat/completions, /embeddings endpoint) is in budget
"""
import time
from datetime import datetime
from typing import TYPE_CHECKING, Any, Literal, Optional
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.caching import DualCache
from litellm.proxy._types import (
LiteLLM_EndUserTable,
LiteLLM_JWTAuth,
LiteLLM_OrganizationTable,
LiteLLM_TeamTable,
LiteLLM_TeamTableCachedObj,
LiteLLM_UserTable,
LiteLLMRoutes,
LitellmUserRoles,
UserAPIKeyAuth,
)
from litellm.proxy.auth.auth_utils import is_llm_api_route
from litellm.proxy.utils import PrismaClient, ProxyLogging, log_to_opentelemetry
from litellm.types.services import ServiceLoggerPayload, ServiceTypes
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
Span = _Span
else:
Span = Any
all_routes = LiteLLMRoutes.openai_routes.value + LiteLLMRoutes.management_routes.value
def common_checks(
request_body: dict,
team_object: Optional[LiteLLM_TeamTable],
user_object: Optional[LiteLLM_UserTable],
end_user_object: Optional[LiteLLM_EndUserTable],
global_proxy_spend: Optional[float],
general_settings: dict,
route: str,
) -> bool:
"""
Common checks across jwt + key-based auth.
1. If team is blocked
2. If team can call model
3. If team is in budget
4. If user passed in (JWT or key.user_id) - is in budget
5. If end_user (either via JWT or 'user' passed to /chat/completions, /embeddings endpoint) is in budget
6. [OPTIONAL] If 'enforce_end_user' enabled - did developer pass in 'user' param for openai endpoints
7. [OPTIONAL] If 'litellm.max_budget' is set (>0), is proxy under budget
8. [OPTIONAL] If guardrails modified - is request allowed to change this
"""
_model = request_body.get("model", None)
if team_object is not None and team_object.blocked is True:
raise Exception(
f"Team={team_object.team_id} is blocked. Update via `/team/unblock` if your admin."
)
# 2. If user can call model
if (
_model is not None
and team_object is not None
and len(team_object.models) > 0
and _model not in team_object.models
):
# this means the team has access to all models on the proxy
if "all-proxy-models" in team_object.models:
# this means the team has access to all models on the proxy
pass
else:
raise Exception(
f"Team={team_object.team_id} not allowed to call model={_model}. Allowed team models = {team_object.models}"
)
# 3. If team is in budget
if (
team_object is not None
and team_object.max_budget is not None
and team_object.spend is not None
and team_object.spend > team_object.max_budget
):
raise Exception(
f"Team={team_object.team_id} over budget. Spend={team_object.spend}, Budget={team_object.max_budget}"
)
# 4. If user is in budget
## 4.1 check personal budget, if personal key
if (
(team_object is None or team_object.team_id is None)
and user_object is not None
and user_object.max_budget is not None
):
user_budget = user_object.max_budget
if user_budget < user_object.spend:
raise Exception(
f"ExceededBudget: User={user_object.user_id} over budget. Spend={user_object.spend}, Budget={user_budget}"
)
## 4.2 check team member budget, if team key
# 5. If end_user ('user' passed to /chat/completions, /embeddings endpoint) is in budget
if end_user_object is not None and end_user_object.litellm_budget_table is not None:
end_user_budget = end_user_object.litellm_budget_table.max_budget
if end_user_budget is not None and end_user_object.spend > end_user_budget:
raise Exception(
f"ExceededBudget: End User={end_user_object.user_id} over budget. Spend={end_user_object.spend}, Budget={end_user_budget}"
)
# 6. [OPTIONAL] If 'enforce_user_param' enabled - did developer pass in 'user' param for openai endpoints
if (
general_settings.get("enforce_user_param", None) is not None
and general_settings["enforce_user_param"] == True
):
if is_llm_api_route(route=route) and "user" not in request_body:
raise Exception(
f"'user' param not passed in. 'enforce_user_param'={general_settings['enforce_user_param']}"
)
if general_settings.get("enforced_params", None) is not None:
# Enterprise ONLY Feature
# we already validate if user is premium_user when reading the config
# Add an extra premium_usercheck here too, just incase
from litellm.proxy.proxy_server import CommonProxyErrors, premium_user
if premium_user is not True:
raise ValueError(
"Trying to use `enforced_params`"
+ CommonProxyErrors.not_premium_user.value
)
if is_llm_api_route(route=route):
# loop through each enforced param
# example enforced_params ['user', 'metadata', 'metadata.generation_name']
for enforced_param in general_settings["enforced_params"]:
_enforced_params = enforced_param.split(".")
if len(_enforced_params) == 1:
if _enforced_params[0] not in request_body:
raise ValueError(
f"BadRequest please pass param={_enforced_params[0]} in request body. This is a required param"
)
elif len(_enforced_params) == 2:
# this is a scenario where user requires request['metadata']['generation_name'] to exist
if _enforced_params[0] not in request_body:
raise ValueError(
f"BadRequest please pass param={_enforced_params[0]} in request body. This is a required param"
)
if _enforced_params[1] not in request_body[_enforced_params[0]]:
raise ValueError(
f"BadRequest please pass param=[{_enforced_params[0]}][{_enforced_params[1]}] in request body. This is a required param"
)
pass
# 7. [OPTIONAL] If 'litellm.max_budget' is set (>0), is proxy under budget
if (
litellm.max_budget > 0
and global_proxy_spend is not None
# only run global budget checks for OpenAI routes
# Reason - the Admin UI should continue working if the proxy crosses it's global budget
and is_llm_api_route(route=route)
and route != "/v1/models"
and route != "/models"
):
if global_proxy_spend > litellm.max_budget:
raise litellm.BudgetExceededError(
current_cost=global_proxy_spend, max_budget=litellm.max_budget
)
_request_metadata: dict = request_body.get("metadata", {}) or {}
if _request_metadata.get("guardrails"):
# check if team allowed to modify guardrails
from litellm.proxy.guardrails.guardrail_helpers import can_modify_guardrails
can_modify: bool = can_modify_guardrails(team_object)
if can_modify is False:
from fastapi import HTTPException
raise HTTPException(
status_code=403,
detail={
"error": "Your team does not have permission to modify guardrails."
},
)
return True
def _allowed_routes_check(user_route: str, allowed_routes: list) -> bool:
"""
Return if a user is allowed to access route. Helper function for `allowed_routes_check`.
Parameters:
- user_route: str - the route the user is trying to call
- allowed_routes: List[str|LiteLLMRoutes] - the list of allowed routes for the user.
"""
for allowed_route in allowed_routes:
if (
allowed_route in LiteLLMRoutes.__members__
and user_route in LiteLLMRoutes[allowed_route].value
):
return True
elif allowed_route == user_route:
return True
return False
def allowed_routes_check(
user_role: Literal[
LitellmUserRoles.PROXY_ADMIN,
LitellmUserRoles.TEAM,
LitellmUserRoles.INTERNAL_USER,
],
user_route: str,
litellm_proxy_roles: LiteLLM_JWTAuth,
) -> bool:
"""
Check if user -> not admin - allowed to access these routes
"""
if user_role == LitellmUserRoles.PROXY_ADMIN:
is_allowed = _allowed_routes_check(
user_route=user_route,
allowed_routes=litellm_proxy_roles.admin_allowed_routes,
)
return is_allowed
elif user_role == LitellmUserRoles.TEAM:
if litellm_proxy_roles.team_allowed_routes is None:
"""
By default allow a team to call openai + info routes
"""
is_allowed = _allowed_routes_check(
user_route=user_route, allowed_routes=["openai_routes", "info_routes"]
)
return is_allowed
elif litellm_proxy_roles.team_allowed_routes is not None:
is_allowed = _allowed_routes_check(
user_route=user_route,
allowed_routes=litellm_proxy_roles.team_allowed_routes,
)
return is_allowed
return False
def get_actual_routes(allowed_routes: list) -> list:
actual_routes: list = []
for route_name in allowed_routes:
try:
route_value = LiteLLMRoutes[route_name].value
actual_routes = actual_routes + route_value
except KeyError:
actual_routes.append(route_name)
return actual_routes
@log_to_opentelemetry
async def get_end_user_object(
end_user_id: Optional[str],
prisma_client: Optional[PrismaClient],
user_api_key_cache: DualCache,
parent_otel_span: Optional[Span] = None,
proxy_logging_obj: Optional[ProxyLogging] = None,
) -> Optional[LiteLLM_EndUserTable]:
"""
Returns end user object, if in db.
Do a isolated check for end user in table vs. doing a combined key + team + user + end-user check, as key might come in frequently for different end-users. Larger call will slowdown query time. This way we get to cache the constant (key/team/user info) and only update based on the changing value (end-user).
"""
if prisma_client is None:
raise Exception("No db connected")
if end_user_id is None:
return None
_key = "end_user_id:{}".format(end_user_id)
def check_in_budget(end_user_obj: LiteLLM_EndUserTable):
if end_user_obj.litellm_budget_table is None:
return
end_user_budget = end_user_obj.litellm_budget_table.max_budget
if end_user_budget is not None and end_user_obj.spend > end_user_budget:
raise litellm.BudgetExceededError(
current_cost=end_user_obj.spend, max_budget=end_user_budget
)
# check if in cache
cached_user_obj = await user_api_key_cache.async_get_cache(key=_key)
if cached_user_obj is not None:
if isinstance(cached_user_obj, dict):
return_obj = LiteLLM_EndUserTable(**cached_user_obj)
check_in_budget(end_user_obj=return_obj)
return return_obj
elif isinstance(cached_user_obj, LiteLLM_EndUserTable):
return_obj = cached_user_obj
check_in_budget(end_user_obj=return_obj)
return return_obj
# else, check db
try:
response = await prisma_client.db.litellm_endusertable.find_unique(
where={"user_id": end_user_id},
include={"litellm_budget_table": True},
)
if response is None:
raise Exception
# save the end-user object to cache
await user_api_key_cache.async_set_cache(
key="end_user_id:{}".format(end_user_id), value=response
)
_response = LiteLLM_EndUserTable(**response.dict())
check_in_budget(end_user_obj=_response)
return _response
except Exception as e: # if end-user not in db
if isinstance(e, litellm.BudgetExceededError):
raise e
return None
@log_to_opentelemetry
async def get_user_object(
user_id: str,
prisma_client: Optional[PrismaClient],
user_api_key_cache: DualCache,
user_id_upsert: bool,
parent_otel_span: Optional[Span] = None,
proxy_logging_obj: Optional[ProxyLogging] = None,
) -> Optional[LiteLLM_UserTable]:
"""
- Check if user id in proxy User Table
- if valid, return LiteLLM_UserTable object with defined limits
- if not, then raise an error
"""
if prisma_client is None:
raise Exception("No db connected")
if user_id is None:
return None
# check if in cache
cached_user_obj = await user_api_key_cache.async_get_cache(key=user_id)
if cached_user_obj is not None:
if isinstance(cached_user_obj, dict):
return LiteLLM_UserTable(**cached_user_obj)
elif isinstance(cached_user_obj, LiteLLM_UserTable):
return cached_user_obj
# else, check db
try:
response = await prisma_client.db.litellm_usertable.find_unique(
where={"user_id": user_id}
)
if response is None:
if user_id_upsert:
response = await prisma_client.db.litellm_usertable.create(
data={"user_id": user_id}
)
else:
raise Exception
_response = LiteLLM_UserTable(**dict(response))
# save the user object to cache
await user_api_key_cache.async_set_cache(key=user_id, value=_response)
return _response
except Exception as e: # if user not in db
raise ValueError(
f"User doesn't exist in db. 'user_id'={user_id}. Create user via `/user/new` call."
)
async def _cache_team_object(
team_id: str,
team_table: LiteLLM_TeamTableCachedObj,
user_api_key_cache: DualCache,
proxy_logging_obj: Optional[ProxyLogging],
):
key = "team_id:{}".format(team_id)
## CACHE REFRESH TIME!
team_table.last_refreshed_at = time.time()
value = team_table.model_dump_json(exclude_unset=True)
await user_api_key_cache.async_set_cache(key=key, value=value)
## UPDATE REDIS CACHE ##
if proxy_logging_obj is not None:
await proxy_logging_obj.internal_usage_cache.async_set_cache(
key=key, value=value
)
@log_to_opentelemetry
async def get_team_object(
team_id: str,
prisma_client: Optional[PrismaClient],
user_api_key_cache: DualCache,
parent_otel_span: Optional[Span] = None,
proxy_logging_obj: Optional[ProxyLogging] = None,
check_cache_only: Optional[bool] = None,
) -> LiteLLM_TeamTableCachedObj:
"""
- Check if team id in proxy Team Table
- if valid, return LiteLLM_TeamTable object with defined limits
- if not, then raise an error
"""
if prisma_client is None:
raise Exception(
"No DB Connected. See - https://docs.litellm.ai/docs/proxy/virtual_keys"
)
# check if in cache
key = "team_id:{}".format(team_id)
cached_team_obj: Optional[LiteLLM_TeamTableCachedObj] = None
## CHECK REDIS CACHE ##
if (
proxy_logging_obj is not None
and proxy_logging_obj.internal_usage_cache.redis_cache is not None
):
cached_team_obj = (
await proxy_logging_obj.internal_usage_cache.redis_cache.async_get_cache(
key=key
)
)
if cached_team_obj is None:
cached_team_obj = await user_api_key_cache.async_get_cache(key=key)
if cached_team_obj is not None:
if isinstance(cached_team_obj, dict):
return LiteLLM_TeamTableCachedObj(**cached_team_obj)
elif isinstance(cached_team_obj, LiteLLM_TeamTableCachedObj):
return cached_team_obj
if check_cache_only:
raise Exception(
f"Team doesn't exist in cache + check_cache_only=True. Team={team_id}. Create team via `/team/new` call."
)
# else, check db
try:
response = await prisma_client.db.litellm_teamtable.find_unique(
where={"team_id": team_id}
)
if response is None:
raise Exception
_response = LiteLLM_TeamTableCachedObj(**response.dict())
# save the team object to cache
await _cache_team_object(
team_id=team_id,
team_table=_response,
user_api_key_cache=user_api_key_cache,
proxy_logging_obj=proxy_logging_obj,
)
return _response
except Exception as e:
raise Exception(
f"Team doesn't exist in db. Team={team_id}. Create team via `/team/new` call."
)
@log_to_opentelemetry
async def get_org_object(
org_id: str,
prisma_client: Optional[PrismaClient],
user_api_key_cache: DualCache,
parent_otel_span: Optional[Span] = None,
proxy_logging_obj: Optional[ProxyLogging] = None,
):
"""
- Check if org id in proxy Org Table
- if valid, return LiteLLM_OrganizationTable object
- if not, then raise an error
"""
if prisma_client is None:
raise Exception(
"No DB Connected. See - https://docs.litellm.ai/docs/proxy/virtual_keys"
)
# check if in cache
cached_org_obj = user_api_key_cache.async_get_cache(key="org_id:{}".format(org_id))
if cached_org_obj is not None:
if isinstance(cached_org_obj, dict):
return cached_org_obj
elif isinstance(cached_org_obj, LiteLLM_OrganizationTable):
return cached_org_obj
# else, check db
try:
response = await prisma_client.db.litellm_organizationtable.find_unique(
where={"organization_id": org_id}
)
if response is None:
raise Exception
return response
except Exception as e:
raise Exception(
f"Organization doesn't exist in db. Organization={org_id}. Create organization via `/organization/new` call."
)
async def can_key_call_model(
model: str, llm_model_list: Optional[list], valid_token: UserAPIKeyAuth
) -> Literal[True]:
"""
Checks if token can call a given model
Returns:
- True: if token allowed to call model
Raises:
- Exception: If token not allowed to call model
"""
if model in litellm.model_alias_map:
model = litellm.model_alias_map[model]
## check if model in allowed model names
verbose_proxy_logger.debug(
f"LLM Model List pre access group check: {llm_model_list}"
)
from collections import defaultdict
access_groups = defaultdict(list)
if llm_model_list is not None:
for m in llm_model_list:
for group in m.get("model_info", {}).get("access_groups", []):
model_name = m["model_name"]
access_groups[group].append(model_name)
models_in_current_access_groups = []
if len(access_groups) > 0: # check if token contains any model access groups
for idx, m in enumerate(
valid_token.models
): # loop token models, if any of them are an access group add the access group
if m in access_groups:
# if it is an access group we need to remove it from valid_token.models
models_in_group = access_groups[m]
models_in_current_access_groups.extend(models_in_group)
# Filter out models that are access_groups
filtered_models = [m for m in valid_token.models if m not in access_groups]
filtered_models += models_in_current_access_groups
verbose_proxy_logger.debug(f"model: {model}; allowed_models: {filtered_models}")
if (
model is not None
and model not in filtered_models
and "*" not in filtered_models
):
raise ValueError(
f"API Key not allowed to access model. This token can only access models={valid_token.models}. Tried to access {model}"
)
valid_token.models = filtered_models
verbose_proxy_logger.debug(
f"filtered allowed_models: {filtered_models}; valid_token.models: {valid_token.models}"
)
return True