litellm-mirror/litellm/tests/test_caching.py
2023-10-20 15:00:40 -07:00

365 lines
13 KiB
Python

import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import embedding, completion
from litellm.caching import Cache
litellm.set_verbose=True
messages = [{"role": "user", "content": "who is ishaan Github? "}]
# comment
def test_gpt_cache():
# INIT GPT Cache #
from gptcache import cache
import gptcache
from gptcache.processor.pre import last_content_without_prompt
from litellm.gpt_cache import completion
from typing import Dict, Any
def pre_cache_func(data: Dict[str, Any], **params: Dict[str, Any]) -> Any:
# use this to set cache key
print("in do nothing")
last_content_without_prompt_val = last_content_without_prompt(data, **params)
print("last content without prompt", last_content_without_prompt_val)
print("model", data["model"])
cache_key = last_content_without_prompt_val + data["model"]
print("cache_key", cache_key)
return cache_key
cache.init(pre_func=pre_cache_func)
cache.set_openai_key()
messages = [{"role": "user", "content": "why should I use LiteLLM today"}]
response1 = completion(model="gpt-3.5-turbo", messages=messages)
response2 = completion(model="gpt-3.5-turbo", messages=messages)
response3 = completion(model="command-nightly", messages=messages)
if response1["choices"] != response2["choices"]: # same models should cache
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
if response3["choices"] == response2["choices"]: # different models, don't cache
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
# test_gpt_cache()
####### Updated Caching as of Aug 28, 2023 ###################
messages = [{"role": "user", "content": "who is ishaan 5222"}]
def test_caching_v2():
try:
litellm.cache = Cache()
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.cache = None # disable cache
if response2['choices'][0]['message']['content'] != response1['choices'][0]['message']['content']:
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred: {e}")
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
# test_caching_v2()
def test_caching_with_models_v2():
messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}]
litellm.cache = Cache()
print("test2 for caching")
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response3 = completion(model="command-nightly", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
litellm.cache = None
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
if response1['choices'][0]['message']['content'] != response2['choices'][0]['message']['content']:
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
# test_caching_with_models_v2()
embedding_large_text = """
small text
""" * 5
# # test_caching_with_models()
def test_embedding_caching():
import time
litellm.cache = Cache()
text_to_embed = [embedding_large_text]
start_time = time.time()
embedding1 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
time.sleep(1)
start_time = time.time()
embedding2 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")
litellm.cache = None
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
print(f"embedding1: {embedding1}")
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
# test_embedding_caching()
def test_embedding_caching_azure():
print("Testing azure embedding caching")
import time
litellm.cache = Cache()
text_to_embed = [embedding_large_text]
api_key = os.environ['AZURE_API_KEY']
api_base = os.environ['AZURE_API_BASE']
api_version = os.environ['AZURE_API_VERSION']
os.environ['AZURE_API_VERSION'] = ""
os.environ['AZURE_API_BASE'] = ""
os.environ['AZURE_API_KEY'] = ""
start_time = time.time()
print("AZURE CONFIGS")
print(api_version)
print(api_key)
print(api_base)
embedding1 = embedding(
model="azure/azure-embedding-model",
input=["good morning from litellm", "this is another item"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
caching=True
)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
time.sleep(1)
start_time = time.time()
embedding2 = embedding(
model="azure/azure-embedding-model",
input=["good morning from litellm", "this is another item"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
caching=True
)
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")
litellm.cache = None
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
print(f"embedding1: {embedding1}")
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
os.environ['AZURE_API_VERSION'] = api_version
os.environ['AZURE_API_BASE'] = api_base
os.environ['AZURE_API_KEY'] = api_key
test_embedding_caching_azure()
# test caching with streaming
# flaky test on circle ci for some reason?
# def test_caching_v2_stream_basic():
# try:
# litellm.cache = Cache()
# messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
# response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
# result_string = ""
# for chunk in response1:
# print(chunk)
# result_string+=chunk['choices'][0]['delta']['content']
# # response1_id = chunk['id']
# print("current cache")
# print(litellm.cache.cache.cache_dict)
# result2_string=""
# import time
# time.sleep(1)
# response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
# for chunk in response2:
# print(chunk)
# result2_string+=chunk['choices'][0]['delta']['content']
# if result_string != result2_string:
# print(result_string)
# print(result2_string)
# pytest.fail(f"Error occurred: Caching with streaming failed, strings diff")
# litellm.cache = None
# except Exception as e:
# print(f"error occurred: {traceback.format_exc()}")
# pytest.fail(f"Error occurred: {e}")
# test_caching_v2_stream_basic()
# def test_caching_v2_stream():
# try:
# litellm.cache = Cache()
# # litellm.token="ishaan@berri.ai"
# messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
# response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
# messages = [{"role": "user", "content": "tell me a chair"}]
# response7 = completion(model="command-nightly", messages=messages)
# messages = [{"role": "user", "content": "sing a song"}]
# response8 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
# result_string = ""
# for chunk in response1:
# print(chunk)
# result_string+=chunk['choices'][0]['delta']['content']
# # response1_id = chunk['id']
# print("current cache")
# messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
# print(litellm.cache.cache.cache_dict)
# result2_string=""
# response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
# for chunk in response2:
# print(chunk)
# result2_string+=chunk['choices'][0]['delta']['content']
# if result_string != result2_string:
# print(result_string)
# print(result2_string)
# pytest.fail(f"Error occurred: Caching with streaming failed, strings diff")
# litellm.cache = None
# except Exception as e:
# print(f"error occurred: {traceback.format_exc()}")
# pytest.fail(f"Error occurred: {e}")
# test_caching_v2_stream()
def test_redis_cache_completion():
messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}]
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
print("test2 for caching")
# patch this redis test
local_cache = {}
def set_cache(key, value):
local_cache[key] = value
def get_cache(key):
if key in local_cache:
return local_cache[key]
litellm.cache.cache.set_cache = set_cache
litellm.cache.cache.get_cache = get_cache
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response3 = completion(model="command-nightly", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
litellm.cache = None
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
if response1['choices'][0]['message']['content'] != response2['choices'][0]['message']['content']: # 1 and 2 should be the same
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
# test_redis_cache_completion()
# redis cache with custom keys
def custom_get_cache_key(*args, **kwargs):
# return key to use for your cache:
key = kwargs.get("model", "") + str(kwargs.get("messages", "")) + str(kwargs.get("temperature", "")) + str(kwargs.get("logit_bias", ""))
print("key for cache", key)
return key
def test_custom_redis_cache_with_key():
messages = [{"role": "user", "content": "write a one line story"}]
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
litellm.cache.get_cache_key = custom_get_cache_key
local_cache = {}
def set_cache(key, value):
local_cache[key] = value
def get_cache(key):
if key in local_cache:
return local_cache[key]
litellm.cache.cache.set_cache = set_cache
litellm.cache.cache.get_cache = get_cache
# patch this redis cache get and set call
response1 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True)
response3 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=False)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
pytest.fail(f"Error occurred:")
# test_custom_redis_cache_with_key()
def test_hosted_cache():
litellm.cache = Cache(type="hosted") # use api.litellm.ai for caching
messages = [{"role": "user", "content": "what is litellm arr today?"}]
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print("response1", response1)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print("response2", response2)
if response1['choices'][0]['message']['content'] != response2['choices'][0]['message']['content']: # 1 and 2 should be the same
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Hosted cache: Response2 is not cached and the same as response 1")
# test_hosted_cache()