mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* fix remove qdrant semantic caching to it's own folder * refactor use 1 file for s3 caching * fix use sep files for in mem and redis caching * fix refactor caching * add readme.md for caching folder
424 lines
14 KiB
Python
424 lines
14 KiB
Python
"""
|
|
Qdrant Semantic Cache implementation
|
|
|
|
Has 4 methods:
|
|
- set_cache
|
|
- get_cache
|
|
- async_set_cache
|
|
- async_get_cache
|
|
"""
|
|
|
|
import ast
|
|
import json
|
|
from typing import Any
|
|
|
|
import litellm
|
|
from litellm._logging import print_verbose
|
|
from litellm.types.caching import LiteLLMCacheType
|
|
|
|
from .base_cache import BaseCache
|
|
|
|
|
|
class QdrantSemanticCache(BaseCache):
|
|
def __init__(
|
|
self,
|
|
qdrant_api_base=None,
|
|
qdrant_api_key=None,
|
|
collection_name=None,
|
|
similarity_threshold=None,
|
|
quantization_config=None,
|
|
embedding_model="text-embedding-ada-002",
|
|
host_type=None,
|
|
):
|
|
import os
|
|
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
_get_httpx_client,
|
|
get_async_httpx_client,
|
|
httpxSpecialProvider,
|
|
)
|
|
from litellm.secret_managers.main import get_secret_str
|
|
|
|
if collection_name is None:
|
|
raise Exception("collection_name must be provided, passed None")
|
|
|
|
self.collection_name = collection_name
|
|
print_verbose(
|
|
f"qdrant semantic-cache initializing COLLECTION - {self.collection_name}"
|
|
)
|
|
|
|
if similarity_threshold is None:
|
|
raise Exception("similarity_threshold must be provided, passed None")
|
|
self.similarity_threshold = similarity_threshold
|
|
self.embedding_model = embedding_model
|
|
headers = {}
|
|
|
|
# check if defined as os.environ/ variable
|
|
if qdrant_api_base:
|
|
if isinstance(qdrant_api_base, str) and qdrant_api_base.startswith(
|
|
"os.environ/"
|
|
):
|
|
qdrant_api_base = get_secret_str(qdrant_api_base)
|
|
if qdrant_api_key:
|
|
if isinstance(qdrant_api_key, str) and qdrant_api_key.startswith(
|
|
"os.environ/"
|
|
):
|
|
qdrant_api_key = get_secret_str(qdrant_api_key)
|
|
|
|
qdrant_api_base = (
|
|
qdrant_api_base or os.getenv("QDRANT_URL") or os.getenv("QDRANT_API_BASE")
|
|
)
|
|
qdrant_api_key = qdrant_api_key or os.getenv("QDRANT_API_KEY")
|
|
headers = {"Content-Type": "application/json"}
|
|
if qdrant_api_key:
|
|
headers["api-key"] = qdrant_api_key
|
|
|
|
if qdrant_api_base is None:
|
|
raise ValueError("Qdrant url must be provided")
|
|
|
|
self.qdrant_api_base = qdrant_api_base
|
|
self.qdrant_api_key = qdrant_api_key
|
|
print_verbose(f"qdrant semantic-cache qdrant_api_base: {self.qdrant_api_base}")
|
|
|
|
self.headers = headers
|
|
|
|
self.sync_client = _get_httpx_client()
|
|
self.async_client = get_async_httpx_client(
|
|
llm_provider=httpxSpecialProvider.Caching
|
|
)
|
|
|
|
if quantization_config is None:
|
|
print_verbose(
|
|
"Quantization config is not provided. Default binary quantization will be used."
|
|
)
|
|
collection_exists = self.sync_client.get(
|
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/exists",
|
|
headers=self.headers,
|
|
)
|
|
if collection_exists.status_code != 200:
|
|
raise ValueError(
|
|
f"Error from qdrant checking if /collections exist {collection_exists.text}"
|
|
)
|
|
|
|
if collection_exists.json()["result"]["exists"]:
|
|
collection_details = self.sync_client.get(
|
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}",
|
|
headers=self.headers,
|
|
)
|
|
self.collection_info = collection_details.json()
|
|
print_verbose(
|
|
f"Collection already exists.\nCollection details:{self.collection_info}"
|
|
)
|
|
else:
|
|
if quantization_config is None or quantization_config == "binary":
|
|
quantization_params = {
|
|
"binary": {
|
|
"always_ram": False,
|
|
}
|
|
}
|
|
elif quantization_config == "scalar":
|
|
quantization_params = {
|
|
"scalar": {"type": "int8", "quantile": 0.99, "always_ram": False}
|
|
}
|
|
elif quantization_config == "product":
|
|
quantization_params = {
|
|
"product": {"compression": "x16", "always_ram": False}
|
|
}
|
|
else:
|
|
raise Exception(
|
|
"Quantization config must be one of 'scalar', 'binary' or 'product'"
|
|
)
|
|
|
|
new_collection_status = self.sync_client.put(
|
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}",
|
|
json={
|
|
"vectors": {"size": 1536, "distance": "Cosine"},
|
|
"quantization_config": quantization_params,
|
|
},
|
|
headers=self.headers,
|
|
)
|
|
if new_collection_status.json()["result"]:
|
|
collection_details = self.sync_client.get(
|
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}",
|
|
headers=self.headers,
|
|
)
|
|
self.collection_info = collection_details.json()
|
|
print_verbose(
|
|
f"New collection created.\nCollection details:{self.collection_info}"
|
|
)
|
|
else:
|
|
raise Exception("Error while creating new collection")
|
|
|
|
def _get_cache_logic(self, cached_response: Any):
|
|
if cached_response is None:
|
|
return cached_response
|
|
try:
|
|
cached_response = json.loads(
|
|
cached_response
|
|
) # Convert string to dictionary
|
|
except Exception:
|
|
cached_response = ast.literal_eval(cached_response)
|
|
return cached_response
|
|
|
|
def set_cache(self, key, value, **kwargs):
|
|
print_verbose(f"qdrant semantic-cache set_cache, kwargs: {kwargs}")
|
|
import uuid
|
|
|
|
# get the prompt
|
|
messages = kwargs["messages"]
|
|
prompt = ""
|
|
for message in messages:
|
|
prompt += message["content"]
|
|
|
|
# create an embedding for prompt
|
|
embedding_response = litellm.embedding(
|
|
model=self.embedding_model,
|
|
input=prompt,
|
|
cache={"no-store": True, "no-cache": True},
|
|
)
|
|
|
|
# get the embedding
|
|
embedding = embedding_response["data"][0]["embedding"]
|
|
|
|
value = str(value)
|
|
assert isinstance(value, str)
|
|
|
|
data = {
|
|
"points": [
|
|
{
|
|
"id": str(uuid.uuid4()),
|
|
"vector": embedding,
|
|
"payload": {
|
|
"text": prompt,
|
|
"response": value,
|
|
},
|
|
},
|
|
]
|
|
}
|
|
self.sync_client.put(
|
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points",
|
|
headers=self.headers,
|
|
json=data,
|
|
)
|
|
return
|
|
|
|
def get_cache(self, key, **kwargs):
|
|
print_verbose(f"sync qdrant semantic-cache get_cache, kwargs: {kwargs}")
|
|
|
|
# get the messages
|
|
messages = kwargs["messages"]
|
|
prompt = ""
|
|
for message in messages:
|
|
prompt += message["content"]
|
|
|
|
# convert to embedding
|
|
embedding_response = litellm.embedding(
|
|
model=self.embedding_model,
|
|
input=prompt,
|
|
cache={"no-store": True, "no-cache": True},
|
|
)
|
|
|
|
# get the embedding
|
|
embedding = embedding_response["data"][0]["embedding"]
|
|
|
|
data = {
|
|
"vector": embedding,
|
|
"params": {
|
|
"quantization": {
|
|
"ignore": False,
|
|
"rescore": True,
|
|
"oversampling": 3.0,
|
|
}
|
|
},
|
|
"limit": 1,
|
|
"with_payload": True,
|
|
}
|
|
|
|
search_response = self.sync_client.post(
|
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points/search",
|
|
headers=self.headers,
|
|
json=data,
|
|
)
|
|
results = search_response.json()["result"]
|
|
|
|
if results is None:
|
|
return None
|
|
if isinstance(results, list):
|
|
if len(results) == 0:
|
|
return None
|
|
|
|
similarity = results[0]["score"]
|
|
cached_prompt = results[0]["payload"]["text"]
|
|
|
|
# check similarity, if more than self.similarity_threshold, return results
|
|
print_verbose(
|
|
f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}"
|
|
)
|
|
if similarity >= self.similarity_threshold:
|
|
# cache hit !
|
|
cached_value = results[0]["payload"]["response"]
|
|
print_verbose(
|
|
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
|
|
)
|
|
return self._get_cache_logic(cached_response=cached_value)
|
|
else:
|
|
# cache miss !
|
|
return None
|
|
pass
|
|
|
|
async def async_set_cache(self, key, value, **kwargs):
|
|
import uuid
|
|
|
|
from litellm.proxy.proxy_server import llm_model_list, llm_router
|
|
|
|
print_verbose(f"async qdrant semantic-cache set_cache, kwargs: {kwargs}")
|
|
|
|
# get the prompt
|
|
messages = kwargs["messages"]
|
|
prompt = ""
|
|
for message in messages:
|
|
prompt += message["content"]
|
|
# create an embedding for prompt
|
|
router_model_names = (
|
|
[m["model_name"] for m in llm_model_list]
|
|
if llm_model_list is not None
|
|
else []
|
|
)
|
|
if llm_router is not None and self.embedding_model in router_model_names:
|
|
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
|
|
embedding_response = await llm_router.aembedding(
|
|
model=self.embedding_model,
|
|
input=prompt,
|
|
cache={"no-store": True, "no-cache": True},
|
|
metadata={
|
|
"user_api_key": user_api_key,
|
|
"semantic-cache-embedding": True,
|
|
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
|
|
},
|
|
)
|
|
else:
|
|
# convert to embedding
|
|
embedding_response = await litellm.aembedding(
|
|
model=self.embedding_model,
|
|
input=prompt,
|
|
cache={"no-store": True, "no-cache": True},
|
|
)
|
|
|
|
# get the embedding
|
|
embedding = embedding_response["data"][0]["embedding"]
|
|
|
|
value = str(value)
|
|
assert isinstance(value, str)
|
|
|
|
data = {
|
|
"points": [
|
|
{
|
|
"id": str(uuid.uuid4()),
|
|
"vector": embedding,
|
|
"payload": {
|
|
"text": prompt,
|
|
"response": value,
|
|
},
|
|
},
|
|
]
|
|
}
|
|
|
|
await self.async_client.put(
|
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points",
|
|
headers=self.headers,
|
|
json=data,
|
|
)
|
|
return
|
|
|
|
async def async_get_cache(self, key, **kwargs):
|
|
print_verbose(f"async qdrant semantic-cache get_cache, kwargs: {kwargs}")
|
|
from litellm.proxy.proxy_server import llm_model_list, llm_router
|
|
|
|
# get the messages
|
|
messages = kwargs["messages"]
|
|
prompt = ""
|
|
for message in messages:
|
|
prompt += message["content"]
|
|
|
|
router_model_names = (
|
|
[m["model_name"] for m in llm_model_list]
|
|
if llm_model_list is not None
|
|
else []
|
|
)
|
|
if llm_router is not None and self.embedding_model in router_model_names:
|
|
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
|
|
embedding_response = await llm_router.aembedding(
|
|
model=self.embedding_model,
|
|
input=prompt,
|
|
cache={"no-store": True, "no-cache": True},
|
|
metadata={
|
|
"user_api_key": user_api_key,
|
|
"semantic-cache-embedding": True,
|
|
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
|
|
},
|
|
)
|
|
else:
|
|
# convert to embedding
|
|
embedding_response = await litellm.aembedding(
|
|
model=self.embedding_model,
|
|
input=prompt,
|
|
cache={"no-store": True, "no-cache": True},
|
|
)
|
|
|
|
# get the embedding
|
|
embedding = embedding_response["data"][0]["embedding"]
|
|
|
|
data = {
|
|
"vector": embedding,
|
|
"params": {
|
|
"quantization": {
|
|
"ignore": False,
|
|
"rescore": True,
|
|
"oversampling": 3.0,
|
|
}
|
|
},
|
|
"limit": 1,
|
|
"with_payload": True,
|
|
}
|
|
|
|
search_response = await self.async_client.post(
|
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points/search",
|
|
headers=self.headers,
|
|
json=data,
|
|
)
|
|
|
|
results = search_response.json()["result"]
|
|
|
|
if results is None:
|
|
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
|
|
return None
|
|
if isinstance(results, list):
|
|
if len(results) == 0:
|
|
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
|
|
return None
|
|
|
|
similarity = results[0]["score"]
|
|
cached_prompt = results[0]["payload"]["text"]
|
|
|
|
# check similarity, if more than self.similarity_threshold, return results
|
|
print_verbose(
|
|
f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}"
|
|
)
|
|
|
|
# update kwargs["metadata"] with similarity, don't rewrite the original metadata
|
|
kwargs.setdefault("metadata", {})["semantic-similarity"] = similarity
|
|
|
|
if similarity >= self.similarity_threshold:
|
|
# cache hit !
|
|
cached_value = results[0]["payload"]["response"]
|
|
print_verbose(
|
|
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
|
|
)
|
|
return self._get_cache_logic(cached_response=cached_value)
|
|
else:
|
|
# cache miss !
|
|
return None
|
|
pass
|
|
|
|
async def _collection_info(self):
|
|
return self.collection_info
|