litellm-mirror/litellm/litellm_core_utils
Krish Dholakia fb1272b46b Support checking provider-specific /models endpoints for available models based on key (#7538)
* test(test_utils.py): initial test for valid models

Addresses https://github.com/BerriAI/litellm/issues/7525

* fix: test

* feat(fireworks_ai/transformation.py): support retrieving valid models from fireworks ai endpoint

* refactor(fireworks_ai/): support checking model info on `/v1/models` route

* docs(set_keys.md): update docs to clarify check llm provider api usage

* fix(watsonx/common_utils.py): support 'WATSONX_ZENAPIKEY' for iam auth

* fix(watsonx): read in watsonx token from env var

* fix: fix linting errors

* fix(utils.py): fix provider config check

* style: cleanup unused imports
2025-01-03 19:29:59 -08:00
..
audio_utils (Refactor) - Re use litellm.completion/litellm.embedding etc for health checks (#7455) 2024-12-28 18:38:54 -08:00
llm_cost_calc LiteLLM Minor Fixes & Improvements (12/23/2024) - p3 (#7394) 2024-12-23 22:02:52 -08:00
llm_response_utils LiteLLM Minor Fixes & Improvements (12/16/2024) - p1 (#7263) 2024-12-17 15:33:36 -08:00
prompt_templates (code quality) run ruff rule to ban unused imports (#7313) 2024-12-19 12:33:42 -08:00
specialty_caches Fix team-based logging to langfuse + allow custom tokenizer on /token_counter endpoint (#7493) 2024-12-31 23:18:41 -08:00
tokenizers Code Quality Improvement - remove tokenizers/ from /llms (#7163) 2024-12-10 23:50:15 -08:00
asyncify.py (code quality) run ruff rule to ban unused imports (#7313) 2024-12-19 12:33:42 -08:00
core_helpers.py fix unused imports 2025-01-02 22:28:22 -08:00
default_encoding.py Code Quality Improvement - remove tokenizers/ from /llms (#7163) 2024-12-10 23:50:15 -08:00
duration_parser.py (QOL improvement) Provider budget routing - allow using 1s, 1d, 1mo, 2mo etc (#6885) 2024-11-23 16:59:46 -08:00
exception_mapping_utils.py Litellm dev 12 30 2024 p2 (#7495) 2025-01-01 18:57:29 -08:00
get_llm_provider_logic.py Support checking provider-specific /models endpoints for available models based on key (#7538) 2025-01-03 19:29:59 -08:00
get_supported_openai_params.py Litellm dev 12 28 2024 p3 (#7464) 2024-12-28 19:18:58 -08:00
health_check_utils.py (Refactor) - Re use litellm.completion/litellm.embedding etc for health checks (#7455) 2024-12-28 18:38:54 -08:00
initialize_dynamic_callback_params.py Fix team-based logging to langfuse + allow custom tokenizer on /token_counter endpoint (#7493) 2024-12-31 23:18:41 -08:00
json_validation_rule.py feat(vertex_ai_anthropic.py): support response_schema for vertex ai anthropic calls 2024-07-18 16:57:38 -07:00
litellm_logging.py (fix) GCS bucket logger - apply truncate_standard_logging_payload_content to standard_logging_payload and ensure GCS flushes queue on fails (#7519) 2025-01-03 08:09:03 -08:00
llm_request_utils.py Litellm ruff linting enforcement (#5992) 2024-10-01 19:44:20 -04:00
logging_utils.py Complete 'requests' library removal (#7350) 2024-12-22 07:21:25 -08:00
mock_functions.py (code quality) run ruff rule to ban unused imports (#7313) 2024-12-19 12:33:42 -08:00
README.md (QOL improvement) Provider budget routing - allow using 1s, 1d, 1mo, 2mo etc (#6885) 2024-11-23 16:59:46 -08:00
realtime_streaming.py (code quality) run ruff rule to ban unused imports (#7313) 2024-12-19 12:33:42 -08:00
redact_messages.py Litellm dev 01 02 2025 p1 (#7516) 2025-01-03 14:40:57 -08:00
response_header_helpers.py fix(utils.py): guarantee openai-compatible headers always exist in response 2024-09-28 21:08:15 -07:00
rules.py Litellm dev 11 07 2024 (#6649) 2024-11-08 19:34:22 +05:30
streaming_chunk_builder_utils.py (code quality) run ruff rule to ban unused imports (#7313) 2024-12-19 12:33:42 -08:00
streaming_handler.py Complete 'requests' library removal (#7350) 2024-12-22 07:21:25 -08:00
token_counter.py fix: Support WebP image format and avoid token calculation error (#7182) 2024-12-12 14:32:39 -08:00

Folder Contents

This folder contains general-purpose utilities that are used in multiple places in the codebase.

Core files:

  • streaming_handler.py: The core streaming logic + streaming related helper utils
  • core_helpers.py: code used in types/ - e.g. map_finish_reason.
  • exception_mapping_utils.py: utils for mapping exceptions to openai-compatible error types.
  • default_encoding.py: code for loading the default encoding (tiktoken)
  • get_llm_provider_logic.py: code for inferring the LLM provider from a given model name.
  • duration_parser.py: code for parsing durations - e.g. "1d", "1mo", "10s"