mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* remove unused imports * fix AmazonConverseConfig * fix test * fix import * ruff check fixes * test fixes * fix testing * fix imports
188 lines
6.7 KiB
Python
188 lines
6.7 KiB
Python
#### What this does ####
|
|
# On success, logs events to Helicone
|
|
import os
|
|
import traceback
|
|
|
|
import litellm
|
|
|
|
|
|
class HeliconeLogger:
|
|
# Class variables or attributes
|
|
helicone_model_list = [
|
|
"gpt",
|
|
"claude",
|
|
"command-r",
|
|
"command-r-plus",
|
|
"command-light",
|
|
"command-medium",
|
|
"command-medium-beta",
|
|
"command-xlarge-nightly",
|
|
"command-nightly",
|
|
]
|
|
|
|
def __init__(self):
|
|
# Instance variables
|
|
self.provider_url = "https://api.openai.com/v1"
|
|
self.key = os.getenv("HELICONE_API_KEY")
|
|
|
|
def claude_mapping(self, model, messages, response_obj):
|
|
from anthropic import AI_PROMPT, HUMAN_PROMPT
|
|
|
|
prompt = f"{HUMAN_PROMPT}"
|
|
for message in messages:
|
|
if "role" in message:
|
|
if message["role"] == "user":
|
|
prompt += f"{HUMAN_PROMPT}{message['content']}"
|
|
else:
|
|
prompt += f"{AI_PROMPT}{message['content']}"
|
|
else:
|
|
prompt += f"{HUMAN_PROMPT}{message['content']}"
|
|
prompt += f"{AI_PROMPT}"
|
|
|
|
choice = response_obj["choices"][0]
|
|
message = choice["message"]
|
|
|
|
content = []
|
|
if "tool_calls" in message and message["tool_calls"]:
|
|
for tool_call in message["tool_calls"]:
|
|
content.append(
|
|
{
|
|
"type": "tool_use",
|
|
"id": tool_call["id"],
|
|
"name": tool_call["function"]["name"],
|
|
"input": tool_call["function"]["arguments"],
|
|
}
|
|
)
|
|
elif "content" in message and message["content"]:
|
|
content = [{"type": "text", "text": message["content"]}]
|
|
|
|
claude_response_obj = {
|
|
"id": response_obj["id"],
|
|
"type": "message",
|
|
"role": "assistant",
|
|
"model": model,
|
|
"content": content,
|
|
"stop_reason": choice["finish_reason"],
|
|
"stop_sequence": None,
|
|
"usage": {
|
|
"input_tokens": response_obj["usage"]["prompt_tokens"],
|
|
"output_tokens": response_obj["usage"]["completion_tokens"],
|
|
},
|
|
}
|
|
|
|
return claude_response_obj
|
|
|
|
@staticmethod
|
|
def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict:
|
|
"""
|
|
Adds metadata from proxy request headers to Helicone logging if keys start with "helicone_"
|
|
and overwrites litellm_params.metadata if already included.
|
|
|
|
For example if you want to add custom property to your request, send
|
|
`headers: { ..., helicone-property-something: 1234 }` via proxy request.
|
|
"""
|
|
if litellm_params is None:
|
|
return metadata
|
|
|
|
if litellm_params.get("proxy_server_request") is None:
|
|
return metadata
|
|
|
|
if metadata is None:
|
|
metadata = {}
|
|
|
|
proxy_headers = (
|
|
litellm_params.get("proxy_server_request", {}).get("headers", {}) or {}
|
|
)
|
|
|
|
for header_key in proxy_headers:
|
|
if header_key.startswith("helicone_"):
|
|
metadata[header_key] = proxy_headers.get(header_key)
|
|
|
|
return metadata
|
|
|
|
def log_success(
|
|
self, model, messages, response_obj, start_time, end_time, print_verbose, kwargs
|
|
):
|
|
# Method definition
|
|
try:
|
|
print_verbose(
|
|
f"Helicone Logging - Enters logging function for model {model}"
|
|
)
|
|
litellm_params = kwargs.get("litellm_params", {})
|
|
kwargs.get("litellm_call_id", None)
|
|
metadata = litellm_params.get("metadata", {}) or {}
|
|
metadata = self.add_metadata_from_header(litellm_params, metadata)
|
|
model = (
|
|
model
|
|
if any(
|
|
accepted_model in model
|
|
for accepted_model in self.helicone_model_list
|
|
)
|
|
else "gpt-3.5-turbo"
|
|
)
|
|
provider_request = {"model": model, "messages": messages}
|
|
if isinstance(response_obj, litellm.EmbeddingResponse) or isinstance(
|
|
response_obj, litellm.ModelResponse
|
|
):
|
|
response_obj = response_obj.json()
|
|
|
|
if "claude" in model:
|
|
response_obj = self.claude_mapping(
|
|
model=model, messages=messages, response_obj=response_obj
|
|
)
|
|
|
|
providerResponse = {
|
|
"json": response_obj,
|
|
"headers": {"openai-version": "2020-10-01"},
|
|
"status": 200,
|
|
}
|
|
|
|
# Code to be executed
|
|
provider_url = self.provider_url
|
|
url = "https://api.hconeai.com/oai/v1/log"
|
|
if "claude" in model:
|
|
url = "https://api.hconeai.com/anthropic/v1/log"
|
|
provider_url = "https://api.anthropic.com/v1/messages"
|
|
headers = {
|
|
"Authorization": f"Bearer {self.key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
start_time_seconds = int(start_time.timestamp())
|
|
start_time_milliseconds = int(
|
|
(start_time.timestamp() - start_time_seconds) * 1000
|
|
)
|
|
end_time_seconds = int(end_time.timestamp())
|
|
end_time_milliseconds = int(
|
|
(end_time.timestamp() - end_time_seconds) * 1000
|
|
)
|
|
meta = {"Helicone-Auth": f"Bearer {self.key}"}
|
|
meta.update(metadata)
|
|
data = {
|
|
"providerRequest": {
|
|
"url": provider_url,
|
|
"json": provider_request,
|
|
"meta": meta,
|
|
},
|
|
"providerResponse": providerResponse,
|
|
"timing": {
|
|
"startTime": {
|
|
"seconds": start_time_seconds,
|
|
"milliseconds": start_time_milliseconds,
|
|
},
|
|
"endTime": {
|
|
"seconds": end_time_seconds,
|
|
"milliseconds": end_time_milliseconds,
|
|
},
|
|
}, # {"seconds": .., "milliseconds": ..}
|
|
}
|
|
response = litellm.module_level_client.post(url, headers=headers, json=data)
|
|
if response.status_code == 200:
|
|
print_verbose("Helicone Logging - Success!")
|
|
else:
|
|
print_verbose(
|
|
f"Helicone Logging - Error Request was not successful. Status Code: {response.status_code}"
|
|
)
|
|
print_verbose(f"Helicone Logging - Error {response.text}")
|
|
except Exception:
|
|
print_verbose(f"Helicone Logging Error - {traceback.format_exc()}")
|
|
pass
|