litellm-mirror/litellm/proxy/proxy_server.py
Krrish Dholakia dc9f02267a update values
2023-09-29 20:53:55 -07:00

145 lines
No EOL
5.1 KiB
Python

import sys, os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
try:
import uvicorn
import fastapi
except ImportError:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "uvicorn", "fastapi"])
print()
print("\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m")
print()
print()
import litellm
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import json
app = FastAPI()
user_api_base = None
user_model = None
user_debug = False
user_max_tokens = None
user_temperature = None
user_telemetry = False
#### HELPER FUNCTIONS ####
def print_verbose(print_statement):
global user_debug
if user_debug:
print(print_statement)
def usage_telemetry(): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
if user_telemetry:
data = {
"feature": "local_proxy_server"
}
litellm.utils.litellm_telemetry(data=data)
def initialize(model, api_base, debug, temperature, max_tokens, telemetry):
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry
user_model = model
user_api_base = api_base
user_debug = debug
user_max_tokens = max_tokens
user_temperature = temperature
user_telemetry = telemetry
usage_telemetry()
# for streaming
def data_generator(response):
print("inside generator")
for chunk in response:
print(f"chunk: {chunk}")
print_verbose(f"returned chunk: {chunk}")
yield f"data: {json.dumps(chunk)}\n\n"
#### API ENDPOINTS ####
@app.get("/models") # if project requires model list
def model_list():
return dict(
data=[{"id": user_model, "object": "model", "created": 1677610602, "owned_by": "openai"}],
object="list",
)
@app.post("/completions")
async def completion(request: Request):
data = await request.json()
print_verbose(f"data passed in: {data}")
if (user_model is None):
raise ValueError("Proxy model needs to be set")
data["model"] = user_model
if user_api_base:
data["api_base"] = user_api_base
## check for custom prompt template ##
litellm.register_prompt_template(
model=user_model,
roles={
"system": {
"pre_message": os.getenv.get("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
"post_message": os.getenv.get("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
},
"assistant": {
"pre_message": os.getenv.get("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
"post_message": os.getenv.get("MODEL_ASSISTANT_MESSAGE_END_TOKEN", "")
},
"user": {
"pre_message": os.getenv.get("MODEL_USER_MESSAGE_START_TOKEN", ""),
"post_message": os.getenv.get("MODEL_USER_MESSAGE_END_TOKEN", "")
}
},
initial_prompt_value=os.getenv.get("MODEL_PRE_PROMPT", ""),
final_prompt_value=os.getenv.get("MODEL_POST_PROMPT", "")
)
response = litellm.text_completion(**data)
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(data_generator(response), media_type='text/event-stream')
return response
@app.post("/chat/completions")
async def chat_completion(request: Request):
data = await request.json()
print_verbose(f"data passed in: {data}")
if (user_model is None):
raise ValueError("Proxy model needs to be set")
data["model"] = user_model
# override with user settings
if user_temperature:
data["temperature"] = user_temperature
if user_max_tokens:
data["max_tokens"] = user_max_tokens
if user_api_base:
data["api_base"] = user_api_base
## check for custom prompt template ##
litellm.register_prompt_template(
model=user_model,
roles={
"system": {
"pre_message": os.getenv("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
"post_message": os.getenv("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
},
"assistant": {
"pre_message": os.getenv("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
"post_message": os.getenv("MODEL_ASSISTANT_MESSAGE_END_TOKEN", "")
},
"user": {
"pre_message": os.getenv("MODEL_USER_MESSAGE_START_TOKEN", ""),
"post_message": os.getenv("MODEL_USER_MESSAGE_END_TOKEN", "")
}
},
initial_prompt_value=os.getenv("MODEL_PRE_PROMPT", ""),
final_prompt_value=os.getenv("MODEL_POST_PROMPT", "")
)
response = litellm.completion(**data)
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
print("reaches stream")
return StreamingResponse(data_generator(response), media_type='text/event-stream')
print_verbose(f"response: {response}")
return response