mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
142 lines
4.5 KiB
Python
142 lines
4.5 KiB
Python
from typing import Dict, Optional
|
|
from collections import defaultdict
|
|
import threading
|
|
import os, subprocess, traceback, json
|
|
from fastapi import HTTPException
|
|
from fastapi.responses import StreamingResponse
|
|
|
|
import backoff
|
|
import openai.error
|
|
|
|
import litellm
|
|
from litellm.utils import trim_messages
|
|
import litellm.exceptions
|
|
|
|
cost_dict: Dict[str, Dict[str, float]] = defaultdict(dict)
|
|
cost_dict_lock = threading.Lock()
|
|
|
|
debug = False
|
|
##### HELPER FUNCTIONS #####
|
|
def print_verbose(print_statement):
|
|
global debug
|
|
if debug:
|
|
print(print_statement)
|
|
|
|
# for streaming
|
|
def data_generator(response):
|
|
print_verbose("inside generator")
|
|
for chunk in response:
|
|
print_verbose(f"returned chunk: {chunk}")
|
|
yield f"data: {json.dumps(chunk)}\n\n"
|
|
|
|
def run_ollama_serve():
|
|
command = ['ollama', 'serve']
|
|
|
|
with open(os.devnull, 'w') as devnull:
|
|
process = subprocess.Popen(command, stdout=devnull, stderr=devnull)
|
|
|
|
##### ERROR HANDLING #####
|
|
class RetryConstantError(Exception):
|
|
pass
|
|
|
|
|
|
class RetryExpoError(Exception):
|
|
pass
|
|
|
|
|
|
class UnknownLLMError(Exception):
|
|
pass
|
|
|
|
|
|
def handle_llm_exception(e: Exception, user_api_base: Optional[str]=None):
|
|
print(f"\033[1;31mLiteLLM.Exception: {str(e)}\033[0m")
|
|
if isinstance(e, openai.error.ServiceUnavailableError) and e.llm_provider == "ollama":
|
|
run_ollama_serve()
|
|
if isinstance(e, openai.error.InvalidRequestError) and e.llm_provider == "ollama":
|
|
completion_call_details = {}
|
|
completion_call_details["model"] = e.model
|
|
if user_api_base:
|
|
completion_call_details["api_base"] = user_api_base
|
|
else:
|
|
completion_call_details["api_base"] = None
|
|
print(f"\033[1;31mLiteLLM.Exception: Invalid API Call. Call details: Model: \033[1;37m{e.model}\033[1;31m; LLM Provider: \033[1;37m{e.llm_provider}\033[1;31m; Custom API Base - \033[1;37m{completion_call_details['api_base']}\033[1;31m\033[0m")
|
|
if completion_call_details["api_base"] == "http://localhost:11434":
|
|
print()
|
|
print("Trying to call ollama? Try `litellm --model ollama/llama2 --api_base http://localhost:11434`")
|
|
print()
|
|
if isinstance(
|
|
e,
|
|
(
|
|
openai.error.APIError,
|
|
openai.error.TryAgain,
|
|
openai.error.Timeout,
|
|
openai.error.ServiceUnavailableError,
|
|
),
|
|
):
|
|
raise RetryConstantError from e
|
|
elif isinstance(e, openai.error.RateLimitError):
|
|
raise RetryExpoError from e
|
|
elif isinstance(
|
|
e,
|
|
(
|
|
openai.error.APIConnectionError,
|
|
openai.error.InvalidRequestError,
|
|
openai.error.AuthenticationError,
|
|
openai.error.PermissionError,
|
|
openai.error.InvalidAPIType,
|
|
openai.error.SignatureVerificationError,
|
|
),
|
|
):
|
|
raise e
|
|
else:
|
|
raise UnknownLLMError from e
|
|
|
|
|
|
@backoff.on_exception(
|
|
wait_gen=backoff.constant,
|
|
exception=RetryConstantError,
|
|
max_tries=3,
|
|
interval=3,
|
|
)
|
|
@backoff.on_exception(
|
|
wait_gen=backoff.expo,
|
|
exception=RetryExpoError,
|
|
jitter=backoff.full_jitter,
|
|
max_value=100,
|
|
factor=1.5,
|
|
)
|
|
|
|
def litellm_completion(data: Dict,
|
|
type: str,
|
|
user_model: Optional[str],
|
|
user_temperature: Optional[str],
|
|
user_max_tokens: Optional[int],
|
|
user_api_base: Optional[str],
|
|
user_headers: Optional[dict],
|
|
user_debug: bool) -> litellm.ModelResponse:
|
|
try:
|
|
global debug
|
|
debug = user_debug
|
|
if user_model:
|
|
data["model"] = user_model
|
|
# override with user settings
|
|
if user_temperature:
|
|
data["temperature"] = user_temperature
|
|
if user_max_tokens:
|
|
data["max_tokens"] = user_max_tokens
|
|
if user_api_base:
|
|
data["api_base"] = user_api_base
|
|
if user_headers:
|
|
data["headers"] = user_headers
|
|
if type == "completion":
|
|
response = litellm.text_completion(**data)
|
|
elif type == "chat_completion":
|
|
response = litellm.completion(**data)
|
|
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
|
return StreamingResponse(data_generator(response), media_type='text/event-stream')
|
|
print_verbose(f"response: {response}")
|
|
return response
|
|
except Exception as e:
|
|
print(e)
|
|
handle_llm_exception(e=e, user_api_base=user_api_base)
|
|
return {"message": "An error occurred"}, 500
|