litellm-mirror/litellm/router_strategy/lowest_cost.py
Krrish Dholakia e391e30285 refactor: replace 'traceback.print_exc()' with logging library
allows error logs to be in json format for otel logging
2024-06-06 13:47:43 -07:00

354 lines
13 KiB
Python

#### What this does ####
# picks based on response time (for streaming, this is time to first token)
from pydantic import BaseModel
from typing import Optional, Union, List, Dict
from datetime import datetime, timedelta
from litellm import verbose_logger
import traceback
from litellm.caching import DualCache
from litellm.integrations.custom_logger import CustomLogger
from litellm._logging import verbose_router_logger
from litellm import ModelResponse
from litellm import token_counter
import litellm
class LiteLLMBase(BaseModel):
"""
Implements default functions, all pydantic objects should have.
"""
def json(self, **kwargs):
try:
return self.model_dump() # noqa
except:
# if using pydantic v1
return self.dict()
class LowestCostLoggingHandler(CustomLogger):
test_flag: bool = False
logged_success: int = 0
logged_failure: int = 0
def __init__(
self, router_cache: DualCache, model_list: list, routing_args: dict = {}
):
self.router_cache = router_cache
self.model_list = model_list
async def log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
"""
Update usage on success
"""
if kwargs["litellm_params"].get("metadata") is None:
pass
else:
model_group = kwargs["litellm_params"]["metadata"].get(
"model_group", None
)
id = kwargs["litellm_params"].get("model_info", {}).get("id", None)
if model_group is None or id is None:
return
elif isinstance(id, int):
id = str(id)
# ------------
# Setup values
# ------------
"""
{
{model_group}_map: {
id: {
f"{date:hour:minute}" : {"tpm": 34, "rpm": 3}
}
}
}
"""
current_date = datetime.now().strftime("%Y-%m-%d")
current_hour = datetime.now().strftime("%H")
current_minute = datetime.now().strftime("%M")
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
cost_key = f"{model_group}_map"
response_ms: timedelta = end_time - start_time
final_value = response_ms
total_tokens = 0
if isinstance(response_obj, ModelResponse):
completion_tokens = response_obj.usage.completion_tokens
total_tokens = response_obj.usage.total_tokens
final_value = float(response_ms.total_seconds() / completion_tokens)
# ------------
# Update usage
# ------------
request_count_dict = (
await self.router_cache.async_get_cache(key=cost_key) or {}
)
# check local result first
if id not in request_count_dict:
request_count_dict[id] = {}
if precise_minute not in request_count_dict[id]:
request_count_dict[id][precise_minute] = {}
## TPM
request_count_dict[id][precise_minute]["tpm"] = (
request_count_dict[id][precise_minute].get("tpm", 0) + total_tokens
)
## RPM
request_count_dict[id][precise_minute]["rpm"] = (
request_count_dict[id][precise_minute].get("rpm", 0) + 1
)
await self.router_cache.async_set_cache(
key=cost_key, value=request_count_dict
)
### TESTING ###
if self.test_flag:
self.logged_success += 1
except Exception as e:
verbose_logger.error(
"litellm.proxy.hooks.prompt_injection_detection.py::async_pre_call_hook(): Exception occured - {}".format(
str(e)
)
)
verbose_logger.debug(traceback.format_exc())
pass
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
"""
Update cost usage on success
"""
if kwargs["litellm_params"].get("metadata") is None:
pass
else:
model_group = kwargs["litellm_params"]["metadata"].get(
"model_group", None
)
id = kwargs["litellm_params"].get("model_info", {}).get("id", None)
if model_group is None or id is None:
return
elif isinstance(id, int):
id = str(id)
# ------------
# Setup values
# ------------
"""
{
{model_group}_map: {
id: {
"cost": [..]
f"{date:hour:minute}" : {"tpm": 34, "rpm": 3}
}
}
}
"""
cost_key = f"{model_group}_map"
current_date = datetime.now().strftime("%Y-%m-%d")
current_hour = datetime.now().strftime("%H")
current_minute = datetime.now().strftime("%M")
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
response_ms: timedelta = end_time - start_time
final_value = response_ms
total_tokens = 0
if isinstance(response_obj, ModelResponse):
completion_tokens = response_obj.usage.completion_tokens
total_tokens = response_obj.usage.total_tokens
final_value = float(response_ms.total_seconds() / completion_tokens)
# ------------
# Update usage
# ------------
request_count_dict = (
await self.router_cache.async_get_cache(key=cost_key) or {}
)
if id not in request_count_dict:
request_count_dict[id] = {}
if precise_minute not in request_count_dict[id]:
request_count_dict[id][precise_minute] = {}
## TPM
request_count_dict[id][precise_minute]["tpm"] = (
request_count_dict[id][precise_minute].get("tpm", 0) + total_tokens
)
## RPM
request_count_dict[id][precise_minute]["rpm"] = (
request_count_dict[id][precise_minute].get("rpm", 0) + 1
)
await self.router_cache.async_set_cache(
key=cost_key, value=request_count_dict
) # reset map within window
### TESTING ###
if self.test_flag:
self.logged_success += 1
except Exception as e:
verbose_logger.error(
"litellm.proxy.hooks.prompt_injection_detection.py::async_pre_call_hook(): Exception occured - {}".format(
str(e)
)
)
verbose_logger.debug(traceback.format_exc())
pass
async def async_get_available_deployments(
self,
model_group: str,
healthy_deployments: list,
messages: Optional[List[Dict[str, str]]] = None,
input: Optional[Union[str, List]] = None,
request_kwargs: Optional[Dict] = None,
):
"""
Returns a deployment with the lowest cost
"""
cost_key = f"{model_group}_map"
request_count_dict = await self.router_cache.async_get_cache(key=cost_key) or {}
# -----------------------
# Find lowest used model
# ----------------------
lowest_cost = float("inf")
current_date = datetime.now().strftime("%Y-%m-%d")
current_hour = datetime.now().strftime("%H")
current_minute = datetime.now().strftime("%M")
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
deployment = None
if request_count_dict is None: # base case
return
all_deployments = request_count_dict
for d in healthy_deployments:
## if healthy deployment not yet used
if d["model_info"]["id"] not in all_deployments:
all_deployments[d["model_info"]["id"]] = {
precise_minute: {"tpm": 0, "rpm": 0},
}
try:
input_tokens = token_counter(messages=messages, text=input)
except:
input_tokens = 0
# randomly sample from all_deployments, incase all deployments have latency=0.0
_items = all_deployments.items()
### GET AVAILABLE DEPLOYMENTS ### filter out any deployments > tpm/rpm limits
potential_deployments = []
_cost_per_deployment = {}
for item, item_map in all_deployments.items():
## get the item from model list
_deployment = None
for m in healthy_deployments:
if item == m["model_info"]["id"]:
_deployment = m
if _deployment is None:
continue # skip to next one
_deployment_tpm = (
_deployment.get("tpm", None)
or _deployment.get("litellm_params", {}).get("tpm", None)
or _deployment.get("model_info", {}).get("tpm", None)
or float("inf")
)
_deployment_rpm = (
_deployment.get("rpm", None)
or _deployment.get("litellm_params", {}).get("rpm", None)
or _deployment.get("model_info", {}).get("rpm", None)
or float("inf")
)
item_litellm_model_name = _deployment.get("litellm_params", {}).get("model")
item_litellm_model_cost_map = litellm.model_cost.get(
item_litellm_model_name, {}
)
# check if user provided input_cost_per_token and output_cost_per_token in litellm_params
item_input_cost = None
item_output_cost = None
if _deployment.get("litellm_params", {}).get("input_cost_per_token", None):
item_input_cost = _deployment.get("litellm_params", {}).get(
"input_cost_per_token"
)
if _deployment.get("litellm_params", {}).get("output_cost_per_token", None):
item_output_cost = _deployment.get("litellm_params", {}).get(
"output_cost_per_token"
)
if item_input_cost is None:
item_input_cost = item_litellm_model_cost_map.get(
"input_cost_per_token", 5.0
)
if item_output_cost is None:
item_output_cost = item_litellm_model_cost_map.get(
"output_cost_per_token", 5.0
)
# if litellm["model"] is not in model_cost map -> use item_cost = $10
item_cost = item_input_cost + item_output_cost
item_rpm = item_map.get(precise_minute, {}).get("rpm", 0)
item_tpm = item_map.get(precise_minute, {}).get("tpm", 0)
verbose_router_logger.debug(
f"item_cost: {item_cost}, item_tpm: {item_tpm}, item_rpm: {item_rpm}, model_id: {_deployment.get('model_info', {}).get('id')}"
)
# -------------- #
# Debugging Logic
# -------------- #
# We use _cost_per_deployment to log to langfuse, slack - this is not used to make a decision on routing
# this helps a user to debug why the router picked a specfic deployment #
_deployment_api_base = _deployment.get("litellm_params", {}).get(
"api_base", ""
)
if _deployment_api_base is not None:
_cost_per_deployment[_deployment_api_base] = item_cost
# -------------- #
# End of Debugging Logic
# -------------- #
if (
item_tpm + input_tokens > _deployment_tpm
or item_rpm + 1 > _deployment_rpm
): # if user passed in tpm / rpm in the model_list
continue
else:
potential_deployments.append((_deployment, item_cost))
if len(potential_deployments) == 0:
return None
potential_deployments = sorted(potential_deployments, key=lambda x: x[1])
selected_deployment = potential_deployments[0][0]
return selected_deployment