litellm-mirror/litellm/router_utils/pattern_match_deployments.py
Krish Dholakia e68bb4e051
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 47s
Litellm dev 12 12 2024 (#7203)
* fix(azure/): support passing headers to azure openai endpoints

Fixes https://github.com/BerriAI/litellm/issues/6217

* fix(utils.py): move default tokenizer to just openai

hf tokenizer makes network calls when trying to get the tokenizer - this slows down execution time calls

* fix(router.py): fix pattern matching router - add generic "*" to it as well

Fixes issue where generic "*" model access group wouldn't show up

* fix(pattern_match_deployments.py): match to more specific pattern

match to more specific pattern

allows setting generic wildcard model access group and excluding specific models more easily

* fix(proxy_server.py): fix _delete_deployment to handle base case where db_model list is empty

don't delete all router models  b/c of empty list

Fixes https://github.com/BerriAI/litellm/issues/7196

* fix(anthropic/): fix handling response_format for anthropic messages with anthropic api

* fix(fireworks_ai/): support passing response_format + tool call in same message

Addresses https://github.com/BerriAI/litellm/issues/7135

* Revert "fix(fireworks_ai/): support passing response_format + tool call in same message"

This reverts commit 6a30dc6929.

* test: fix test

* fix(replicate/): fix replicate default retry/polling logic

* test: add unit testing for router pattern matching

* test: update test to use default oai tokenizer

* test: mark flaky test

* test: skip flaky test
2024-12-13 08:54:03 -08:00

267 lines
8.6 KiB
Python

"""
Class to handle llm wildcard routing and regex pattern matching
"""
import copy
import re
from functools import cached_property
from re import Match
from typing import Dict, List, Optional, Tuple
from litellm import get_llm_provider
from litellm._logging import verbose_router_logger
class PatternUtils:
@staticmethod
def calculate_pattern_specificity(pattern: str) -> Tuple[int, int]:
"""
Calculate pattern specificity based on length and complexity.
Args:
pattern: Regex pattern to analyze
Returns:
Tuple of (length, complexity) for sorting
"""
complexity_chars = ["*", "+", "?", "\\", "^", "$", "|", "(", ")"]
ret_val = (
len(pattern), # Longer patterns more specific
sum(
pattern.count(char) for char in complexity_chars
), # More regex complexity
)
return ret_val
@staticmethod
def sorted_patterns(
patterns: Dict[str, List[Dict]]
) -> List[Tuple[str, List[Dict]]]:
"""
Cached property for patterns sorted by specificity.
Returns:
Sorted list of pattern-deployment tuples
"""
return sorted(
patterns.items(),
key=lambda x: PatternUtils.calculate_pattern_specificity(x[0]),
reverse=True,
)
class PatternMatchRouter:
"""
Class to handle llm wildcard routing and regex pattern matching
doc: https://docs.litellm.ai/docs/proxy/configs#provider-specific-wildcard-routing
This class will store a mapping for regex pattern: List[Deployments]
"""
def __init__(self):
self.patterns: Dict[str, List] = {}
def add_pattern(self, pattern: str, llm_deployment: Dict):
"""
Add a regex pattern and the corresponding llm deployments to the patterns
Args:
pattern: str
llm_deployment: str or List[str]
"""
# Convert the pattern to a regex
regex = self._pattern_to_regex(pattern)
if regex not in self.patterns:
self.patterns[regex] = []
self.patterns[regex].append(llm_deployment)
def _pattern_to_regex(self, pattern: str) -> str:
"""
Convert a wildcard pattern to a regex pattern
example:
pattern: openai/*
regex: openai/.*
pattern: openai/fo::*::static::*
regex: openai/fo::.*::static::.*
Args:
pattern: str
Returns:
str: regex pattern
"""
# # Replace '*' with '.*' for regex matching
# regex = pattern.replace("*", ".*")
# # Escape other special characters
# regex = re.escape(regex).replace(r"\.\*", ".*")
# return f"^{regex}$"
return re.escape(pattern).replace(r"\*", "(.*)")
def _return_pattern_matched_deployments(
self, matched_pattern: Match, deployments: List[Dict]
) -> List[Dict]:
new_deployments = []
for deployment in deployments:
new_deployment = copy.deepcopy(deployment)
new_deployment["litellm_params"]["model"] = (
PatternMatchRouter.set_deployment_model_name(
matched_pattern=matched_pattern,
litellm_deployment_litellm_model=deployment["litellm_params"][
"model"
],
)
)
new_deployments.append(new_deployment)
return new_deployments
def route(
self, request: Optional[str], filtered_model_names: Optional[List[str]] = None
) -> Optional[List[Dict]]:
"""
Route a requested model to the corresponding llm deployments based on the regex pattern
loop through all the patterns and find the matching pattern
if a pattern is found, return the corresponding llm deployments
if no pattern is found, return None
Args:
request: Optional[str]
filtered_model_names: Optional[List[str]] - if provided, only return deployments that match the filtered_model_names
Returns:
Optional[List[Deployment]]: llm deployments
"""
try:
if request is None:
return None
sorted_patterns = PatternUtils.sorted_patterns(self.patterns)
regex_filtered_model_names = (
[self._pattern_to_regex(m) for m in filtered_model_names]
if filtered_model_names is not None
else []
)
for pattern, llm_deployments in sorted_patterns:
if (
filtered_model_names is not None
and pattern not in regex_filtered_model_names
):
continue
pattern_match = re.match(pattern, request)
if pattern_match:
return self._return_pattern_matched_deployments(
matched_pattern=pattern_match, deployments=llm_deployments
)
except Exception as e:
verbose_router_logger.debug(f"Error in PatternMatchRouter.route: {str(e)}")
return None # No matching pattern found
@staticmethod
def set_deployment_model_name(
matched_pattern: Match,
litellm_deployment_litellm_model: str,
) -> str:
"""
Set the model name for the matched pattern llm deployment
E.g.:
Case 1:
model_name: llmengine/* (can be any regex pattern or wildcard pattern)
litellm_params:
model: openai/*
if model_name = "llmengine/foo" -> model = "openai/foo"
Case 2:
model_name: llmengine/fo::*::static::*
litellm_params:
model: openai/fo::*::static::*
if model_name = "llmengine/foo::bar::static::baz" -> model = "openai/foo::bar::static::baz"
Case 3:
model_name: *meta.llama3*
litellm_params:
model: bedrock/meta.llama3*
if model_name = "hello-world-meta.llama3-70b" -> model = "bedrock/meta.llama3-70b"
"""
## BASE CASE: if the deployment model name does not contain a wildcard, return the deployment model name
if "*" not in litellm_deployment_litellm_model:
return litellm_deployment_litellm_model
wildcard_count = litellm_deployment_litellm_model.count("*")
# Extract all dynamic segments from the request
dynamic_segments = matched_pattern.groups()
if len(dynamic_segments) > wildcard_count:
return (
matched_pattern.string
) # default to the user input, if unable to map based on wildcards.
# Replace the corresponding wildcards in the litellm model pattern with extracted segments
for segment in dynamic_segments:
litellm_deployment_litellm_model = litellm_deployment_litellm_model.replace(
"*", segment, 1
)
return litellm_deployment_litellm_model
def get_pattern(
self, model: str, custom_llm_provider: Optional[str] = None
) -> Optional[List[Dict]]:
"""
Check if a pattern exists for the given model and custom llm provider
Args:
model: str
custom_llm_provider: Optional[str]
Returns:
bool: True if pattern exists, False otherwise
"""
if custom_llm_provider is None:
try:
(
_,
custom_llm_provider,
_,
_,
) = get_llm_provider(model=model)
except Exception:
# get_llm_provider raises exception when provider is unknown
pass
return self.route(model) or self.route(f"{custom_llm_provider}/{model}")
def get_deployments_by_pattern(
self, model: str, custom_llm_provider: Optional[str] = None
) -> List[Dict]:
"""
Get the deployments by pattern
Args:
model: str
custom_llm_provider: Optional[str]
Returns:
List[Dict]: llm deployments matching the pattern
"""
pattern_match = self.get_pattern(model, custom_llm_provider)
if pattern_match:
return pattern_match
return []
# Example usage:
# router = PatternRouter()
# router.add_pattern('openai/*', [Deployment(), Deployment()])
# router.add_pattern('openai/fo::*::static::*', Deployment())
# print(router.route('openai/gpt-4')) # Output: [Deployment(), Deployment()]
# print(router.route('openai/fo::hi::static::hi')) # Output: [Deployment()]
# print(router.route('something/else')) # Output: None