litellm-mirror/tests/llm_translation/test_azure_openai.py
Krish Dholakia e68bb4e051
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 47s
Litellm dev 12 12 2024 (#7203)
* fix(azure/): support passing headers to azure openai endpoints

Fixes https://github.com/BerriAI/litellm/issues/6217

* fix(utils.py): move default tokenizer to just openai

hf tokenizer makes network calls when trying to get the tokenizer - this slows down execution time calls

* fix(router.py): fix pattern matching router - add generic "*" to it as well

Fixes issue where generic "*" model access group wouldn't show up

* fix(pattern_match_deployments.py): match to more specific pattern

match to more specific pattern

allows setting generic wildcard model access group and excluding specific models more easily

* fix(proxy_server.py): fix _delete_deployment to handle base case where db_model list is empty

don't delete all router models  b/c of empty list

Fixes https://github.com/BerriAI/litellm/issues/7196

* fix(anthropic/): fix handling response_format for anthropic messages with anthropic api

* fix(fireworks_ai/): support passing response_format + tool call in same message

Addresses https://github.com/BerriAI/litellm/issues/7135

* Revert "fix(fireworks_ai/): support passing response_format + tool call in same message"

This reverts commit 6a30dc6929.

* test: fix test

* fix(replicate/): fix replicate default retry/polling logic

* test: add unit testing for router pattern matching

* test: update test to use default oai tokenizer

* test: mark flaky test

* test: skip flaky test
2024-12-13 08:54:03 -08:00

213 lines
6.9 KiB
Python

import sys
import os
sys.path.insert(
0, os.path.abspath("../../")
) # Adds the parent directory to the system path
import pytest
from litellm.llms.azure.common_utils import process_azure_headers
from httpx import Headers
from base_embedding_unit_tests import BaseLLMEmbeddingTest
def test_process_azure_headers_empty():
result = process_azure_headers({})
assert result == {}, "Expected empty dictionary for no input"
def test_process_azure_headers_with_all_headers():
input_headers = Headers(
{
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"x-ratelimit-limit-tokens": "10000",
"x-ratelimit-remaining-tokens": "9000",
"other-header": "value",
}
)
expected_output = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"x-ratelimit-limit-tokens": "10000",
"x-ratelimit-remaining-tokens": "9000",
"llm_provider-x-ratelimit-limit-requests": "100",
"llm_provider-x-ratelimit-remaining-requests": "90",
"llm_provider-x-ratelimit-limit-tokens": "10000",
"llm_provider-x-ratelimit-remaining-tokens": "9000",
"llm_provider-other-header": "value",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for all Azure headers"
def test_process_azure_headers_with_partial_headers():
input_headers = Headers(
{
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-tokens": "9000",
"other-header": "value",
}
)
expected_output = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-tokens": "9000",
"llm_provider-x-ratelimit-limit-requests": "100",
"llm_provider-x-ratelimit-remaining-tokens": "9000",
"llm_provider-other-header": "value",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for partial Azure headers"
def test_process_azure_headers_with_no_matching_headers():
input_headers = Headers(
{"unrelated-header-1": "value1", "unrelated-header-2": "value2"}
)
expected_output = {
"llm_provider-unrelated-header-1": "value1",
"llm_provider-unrelated-header-2": "value2",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for non-matching headers"
def test_process_azure_headers_with_dict_input():
input_headers = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"other-header": "value",
}
expected_output = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"llm_provider-x-ratelimit-limit-requests": "100",
"llm_provider-x-ratelimit-remaining-requests": "90",
"llm_provider-other-header": "value",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for dict input"
from httpx import Client
from unittest.mock import MagicMock, patch
from openai import AzureOpenAI
import litellm
from litellm import completion
import os
@pytest.mark.parametrize(
"input, call_type",
[
({"messages": [{"role": "user", "content": "Hello world"}]}, "completion"),
({"input": "Hello world"}, "embedding"),
({"prompt": "Hello world"}, "image_generation"),
],
)
@pytest.mark.parametrize(
"header_value",
[
"headers",
"extra_headers",
],
)
def test_azure_extra_headers(input, call_type, header_value):
from litellm import embedding, image_generation
http_client = Client()
messages = [{"role": "user", "content": "Hello world"}]
with patch.object(http_client, "send", new=MagicMock()) as mock_client:
litellm.client_session = http_client
try:
if call_type == "completion":
func = completion
elif call_type == "embedding":
func = embedding
elif call_type == "image_generation":
func = image_generation
data = {
"model": "azure/chatgpt-v-2",
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com",
"api_version": "2023-07-01-preview",
"api_key": "my-azure-api-key",
header_value: {
"Authorization": "my-bad-key",
"Ocp-Apim-Subscription-Key": "hello-world-testing",
},
**input,
}
response = func(**data)
print(response)
except Exception as e:
print(e)
mock_client.assert_called()
print(f"mock_client.call_args: {mock_client.call_args}")
request = mock_client.call_args[0][0]
print(request.method) # This will print 'POST'
print(request.url) # This will print the full URL
print(request.headers) # This will print the full URL
auth_header = request.headers.get("Authorization")
apim_key = request.headers.get("Ocp-Apim-Subscription-Key")
print(auth_header)
assert auth_header == "my-bad-key"
assert apim_key == "hello-world-testing"
@pytest.mark.parametrize(
"api_base, model, expected_endpoint",
[
(
"https://my-endpoint-sweden-berri992.openai.azure.com",
"dall-e-3-test",
"https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/dall-e-3-test/images/generations?api-version=2023-12-01-preview",
),
(
"https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/my-custom-deployment",
"dall-e-3",
"https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/my-custom-deployment/images/generations?api-version=2023-12-01-preview",
),
],
)
def test_process_azure_endpoint_url(api_base, model, expected_endpoint):
from litellm.llms.azure.azure import AzureChatCompletion
azure_chat_completion = AzureChatCompletion()
input_args = {
"azure_client_params": {
"api_version": "2023-12-01-preview",
"azure_endpoint": api_base,
"azure_deployment": model,
"max_retries": 2,
"timeout": 600,
"api_key": "f28ab7b695af4154bc53498e5bdccb07",
},
"model": model,
}
result = azure_chat_completion.create_azure_base_url(**input_args)
assert result == expected_endpoint, "Unexpected endpoint"
class TestAzureEmbedding(BaseLLMEmbeddingTest):
def get_base_embedding_call_args(self) -> dict:
return {
"model": "azure/azure-embedding-model",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
}
def get_custom_llm_provider(self) -> litellm.LlmProviders:
return litellm.LlmProviders.AZURE