mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
95 lines
4 KiB
Python
95 lines
4 KiB
Python
import sys, os
|
|
import traceback
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
import litellm
|
|
from litellm.utils import trim_messages, get_token_count, get_valid_models, check_valid_key
|
|
|
|
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'
|
|
|
|
# Test 1: Check trimming of normal message
|
|
def test_basic_trimming():
|
|
messages = [{"role": "user", "content": "This is a long message that definitely exceeds the token limit."}]
|
|
trimmed_messages = trim_messages(messages, model="claude-2", max_tokens=8)
|
|
print("trimmed messages")
|
|
print(trimmed_messages)
|
|
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
|
|
assert (get_token_count(messages=trimmed_messages, model="claude-2")) <= 8
|
|
# test_basic_trimming()
|
|
|
|
def test_basic_trimming_no_max_tokens_specified():
|
|
messages = [{"role": "user", "content": "This is a long message that is definitely under the token limit."}]
|
|
trimmed_messages = trim_messages(messages, model="gpt-4")
|
|
print("trimmed messages for gpt-4")
|
|
print(trimmed_messages)
|
|
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
|
|
assert (get_token_count(messages=trimmed_messages, model="gpt-4")) <= litellm.model_cost['gpt-4']['max_tokens']
|
|
# test_basic_trimming_no_max_tokens_specified()
|
|
|
|
def test_multiple_messages_trimming():
|
|
messages = [
|
|
{"role": "user", "content": "This is a long message that will exceed the token limit."},
|
|
{"role": "user", "content": "This is another long message that will also exceed the limit."}
|
|
]
|
|
trimmed_messages = trim_messages(messages=messages, model="gpt-3.5-turbo", max_tokens=20)
|
|
print("Trimmed messages")
|
|
print(trimmed_messages)
|
|
# print(get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo"))
|
|
assert(get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo")) <= 20
|
|
# test_multiple_messages_trimming()
|
|
|
|
def test_multiple_messages_no_trimming():
|
|
messages = [
|
|
{"role": "user", "content": "This is a long message that will exceed the token limit."},
|
|
{"role": "user", "content": "This is another long message that will also exceed the limit."}
|
|
]
|
|
trimmed_messages = trim_messages(messages=messages, model="gpt-3.5-turbo", max_tokens=100)
|
|
print("Trimmed messages")
|
|
print(trimmed_messages)
|
|
assert(messages==trimmed_messages)
|
|
|
|
# test_multiple_messages_no_trimming()
|
|
|
|
|
|
def test_large_trimming():
|
|
messages = [{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}, {"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}]
|
|
trimmed_messages = trim_messages(messages, max_tokens=20, model="random")
|
|
print("trimmed messages")
|
|
print(trimmed_messages)
|
|
assert(get_token_count(messages=trimmed_messages, model="random")) <= 20
|
|
# test_large_trimming()
|
|
|
|
def test_get_valid_models():
|
|
old_environ = os.environ
|
|
os.environ = {'OPENAI_API_KEY': 'temp'} # mock set only openai key in environ
|
|
|
|
valid_models = get_valid_models()
|
|
print(valid_models)
|
|
|
|
# list of openai supported llms on litellm
|
|
expected_models = litellm.open_ai_chat_completion_models + litellm.open_ai_text_completion_models
|
|
|
|
assert(valid_models == expected_models)
|
|
|
|
# reset replicate env key
|
|
os.environ = old_environ
|
|
|
|
# test_get_valid_models()
|
|
|
|
def test_bad_key():
|
|
key = "bad-key"
|
|
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
|
|
print(response, key)
|
|
assert(response == False)
|
|
|
|
def test_good_key():
|
|
key = os.environ['OPENAI_API_KEY']
|
|
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
|
|
assert(response == True)
|