mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
209 lines
7.9 KiB
Python
209 lines
7.9 KiB
Python
## Uses the huggingface text generation inference API
|
|
import os, copy
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable
|
|
from litellm.utils import ModelResponse
|
|
from typing import Optional
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
|
|
class HuggingfaceError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
def validate_environment(api_key):
|
|
headers = {
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
return headers
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
api_base: Optional[str],
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
custom_prompt_dict={},
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
headers = validate_environment(api_key)
|
|
task = optional_params.pop("task")
|
|
completion_url = ""
|
|
input_text = None
|
|
if "https" in model:
|
|
completion_url = model
|
|
elif api_base:
|
|
completion_url = api_base
|
|
elif "HF_API_BASE" in os.environ:
|
|
completion_url = os.getenv("HF_API_BASE", "")
|
|
else:
|
|
completion_url = f"https://api-inference.huggingface.co/models/{model}"
|
|
|
|
### MAP INPUT PARAMS
|
|
if task == "conversational":
|
|
inference_params = copy.deepcopy(optional_params)
|
|
inference_params.pop("details")
|
|
past_user_inputs = []
|
|
generated_responses = []
|
|
text = ""
|
|
for message in messages:
|
|
if message["role"] == "user":
|
|
if text != "":
|
|
past_user_inputs.append(text)
|
|
text = message["content"]
|
|
elif message["role"] == "assistant" or message["role"] == "system":
|
|
generated_responses.append(message["content"])
|
|
data = {
|
|
"inputs": {
|
|
"text": text,
|
|
"past_user_inputs": past_user_inputs,
|
|
"generated_responses": generated_responses
|
|
},
|
|
"parameters": inference_params
|
|
}
|
|
input_text = "".join(message["content"] for message in messages)
|
|
elif task == "text-generation-inference":
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=messages
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
if "https://api-inference.huggingface.co/models" in completion_url:
|
|
inference_params = copy.deepcopy(optional_params)
|
|
inference_params.pop("details")
|
|
data = {
|
|
"inputs": prompt,
|
|
"parameters": inference_params,
|
|
"stream": True if "stream" in inference_params and inference_params["stream"] == True else False,
|
|
}
|
|
else:
|
|
data = {
|
|
"inputs": prompt,
|
|
"parameters": optional_params,
|
|
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False,
|
|
}
|
|
input_text = prompt
|
|
elif task == "other":
|
|
print("task=other, custom api base")
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=messages
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
inference_params = copy.deepcopy(optional_params)
|
|
inference_params.pop("details")
|
|
inference_params.pop("return_full_text")
|
|
print("inf params")
|
|
print(inference_params)
|
|
data = {
|
|
"inputs": prompt,
|
|
"parameters": inference_params,
|
|
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False,
|
|
}
|
|
input_text = prompt
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input_text,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data, "task": task},
|
|
)
|
|
## COMPLETION CALL
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
response = requests.post(
|
|
completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
stream=optional_params["stream"]
|
|
)
|
|
return response.iter_lines()
|
|
else:
|
|
response = requests.post(
|
|
completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data)
|
|
)
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input_text,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data, "task": task},
|
|
)
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = response.json()
|
|
except:
|
|
raise HuggingfaceError(
|
|
message=response.text, status_code=response.status_code
|
|
)
|
|
print_verbose(f"response: {completion_response}")
|
|
if isinstance(completion_response, dict) and "error" in completion_response:
|
|
print_verbose(f"completion error: {completion_response['error']}")
|
|
print_verbose(f"response.status_code: {response.status_code}")
|
|
raise HuggingfaceError(
|
|
message=completion_response["error"],
|
|
status_code=response.status_code,
|
|
)
|
|
else:
|
|
if task == "conversational":
|
|
model_response["choices"][0]["message"][
|
|
"content"
|
|
] = completion_response["generated_text"]
|
|
elif task == "text-generation-inference":
|
|
model_response["choices"][0]["message"][
|
|
"content"
|
|
] = completion_response[0]["generated_text"]
|
|
## GETTING LOGPROBS + FINISH REASON
|
|
if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]:
|
|
model_response.choices[0].finish_reason = completion_response[0]["details"]["finish_reason"]
|
|
sum_logprob = 0
|
|
for token in completion_response[0]["details"]["tokens"]:
|
|
sum_logprob += token["logprob"]
|
|
model_response["choices"][0]["message"]["logprobs"] = sum_logprob
|
|
elif task == "other":
|
|
model_response["choices"][0]["message"]["content"] = str(completion_response[0]["generated_text"])
|
|
## CALCULATING USAGE
|
|
prompt_tokens = len(
|
|
encoding.encode(input_text)
|
|
) ##[TODO] use the llama2 tokenizer here
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"]["content"])
|
|
) ##[TODO] use the llama2 tokenizer here
|
|
|
|
model_response["created"] = time.time()
|
|
model_response["model"] = model
|
|
model_response["usage"] = {
|
|
"prompt_tokens": prompt_tokens,
|
|
"completion_tokens": completion_tokens,
|
|
"total_tokens": prompt_tokens + completion_tokens,
|
|
}
|
|
return model_response
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|