litellm-mirror/litellm/proxy/proxy_server.py

1072 lines
42 KiB
Python

import sys, os, platform, time, copy, re, asyncio
import threading, ast
import shutil, random, traceback, requests
from datetime import datetime, timedelta
from typing import Optional, List
import secrets, subprocess
import warnings
messages: list = []
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path - for litellm local dev
try:
import uvicorn
import fastapi
import appdirs
import backoff
import yaml
import rq
import orjson
except ImportError:
import sys
subprocess.check_call(
[
sys.executable,
"-m",
"pip",
"install",
"uvicorn",
"fastapi",
"appdirs",
"backoff",
"pyyaml",
"rq",
"orjson"
]
)
import uvicorn
import fastapi
import appdirs
import backoff
import yaml
import orjson
warnings.warn(
"Installed runtime dependencies for proxy server. Specify these dependencies explicitly with `pip install litellm[proxy]`"
)
import random
list_of_messages = [
"'The thing I wish you improved is...'",
"'A feature I really want is...'",
"'The worst thing about this product is...'",
"'This product would be better if...'",
"'I don't like how this works...'",
"'It would help me if you could add...'",
"'This feature doesn't meet my needs because...'",
"'I get frustrated when the product...'",
]
def generate_feedback_box():
box_width = 60
# Select a random message
message = random.choice(list_of_messages)
print()
print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m")
print("\033[1;37m" + "#" + " " * box_width + "#\033[0m")
print("\033[1;37m" + "# {:^59} #\033[0m".format(message))
print(
"\033[1;37m"
+ "# {:^59} #\033[0m".format("https://github.com/BerriAI/litellm/issues/new")
)
print("\033[1;37m" + "#" + " " * box_width + "#\033[0m")
print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m")
print()
print(" Thank you for using LiteLLM! - Krrish & Ishaan")
print()
print()
print()
print(
"\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m"
)
print()
print()
import litellm
from litellm.caching import DualCache
litellm.suppress_debug_info = True
from fastapi import FastAPI, Request, HTTPException, status, Depends
from fastapi.routing import APIRouter
from fastapi.encoders import jsonable_encoder
from fastapi.responses import StreamingResponse, FileResponse, ORJSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security.api_key import APIKeyHeader
import json
import logging
# from litellm.proxy.queue import start_rq_worker_in_background
app = FastAPI(docs_url="/", title="LiteLLM API")
router = APIRouter()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
from typing import Dict
from pydantic import BaseModel, Extra
######### Request Class Definition ######
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Dict[str, str]]
temperature: Optional[float] = None
top_p: Optional[float] = None
n: Optional[int] = None
stream: Optional[bool] = None
stop: Optional[List[str]] = None
max_tokens: Optional[float] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
response_format: Optional[Dict[str, str]] = None
seed: Optional[int] = None
tools: Optional[List[str]] = None
tool_choice: Optional[str] = None
functions: List[str] = None # soon to be deprecated
function_call: Optional[str] = None # soon to be deprecated
# Optional LiteLLM params
caching: Optional[bool] = None
api_base: Optional[str] = None
api_version: Optional[str] = None
api_key: Optional[str] = None
num_retries: Optional[int] = None
context_window_fallback_dict: Optional[Dict[str, str]] = None
fallbacks: Optional[List[str]] = None
metadata: Optional[Dict[str, str]] = {}
deployment_id: Optional[str] = None
request_timeout: Optional[int] = None
class Config:
extra='allow' # allow params not defined here, these fall in litellm.completion(**kwargs)
user_api_base = None
user_model = None
user_debug = False
user_max_tokens = None
user_request_timeout = None
user_temperature = None
user_telemetry = True
user_config = None
user_headers = None
local_logging = True # writes logs to a local api_log.json file for debugging
experimental = False
#### GLOBAL VARIABLES ####
llm_router: Optional[litellm.Router] = None
llm_model_list: Optional[list] = None
general_settings: dict = {}
log_file = "api_log.json"
worker_config = None
master_key = None
prisma_client = None
user_api_key_cache = DualCache()
### REDIS QUEUE ###
async_result = None
celery_app_conn = None
celery_fn = None # Redis Queue for handling requests
#### HELPER FUNCTIONS ####
def print_verbose(print_statement):
global user_debug
if user_debug:
print(print_statement)
def usage_telemetry(
feature: str,
): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
if user_telemetry:
data = {"feature": feature} # "local_proxy_server"
threading.Thread(
target=litellm.utils.litellm_telemetry, args=(data,), daemon=True
).start()
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
async def user_api_key_auth(request: Request, api_key: str = fastapi.Security(api_key_header)):
global master_key, prisma_client, llm_model_list
if master_key is None:
return {
"api_key": None
}
try:
route = request.url.path
# note: never string compare api keys, this is vulenerable to a time attack. Use secrets.compare_digest instead
is_master_key_valid = secrets.compare_digest(api_key, master_key) or secrets.compare_digest(api_key, "Bearer " + master_key)
if is_master_key_valid:
return {
"api_key": master_key
}
if (route == "/key/generate" or route == "/key/delete" or route == "/key/info") and not is_master_key_valid:
raise Exception(f"If master key is set, only master key can be used to generate, delete or get info for new keys")
if prisma_client:
## check for cache hit (In-Memory Cache)
valid_token = user_api_key_cache.get_cache(key=api_key)
if valid_token is None:
## check db
if "Bearer " in api_key:
cleaned_api_key = api_key[len("Bearer "):]
valid_token = await prisma_client.litellm_verificationtoken.find_first(
where={
"token": cleaned_api_key,
"expires": {"gte": datetime.utcnow()} # Check if the token is not expired
}
)
## save to cache for 60s
user_api_key_cache.set_cache(key=api_key, value=valid_token, ttl=60)
else:
print(f"API Key Cache Hit!")
if valid_token:
litellm.model_alias_map = valid_token.aliases
config = valid_token.config
if config != {}:
model_list = config.get("model_list", [])
llm_model_list = model_list
print("\n new llm router model list", llm_model_list)
if len(valid_token.models) == 0: # assume an empty model list means all models are allowed to be called
return {
"api_key": valid_token.token
}
else:
data = await request.json()
model = data.get("model", None)
if model in litellm.model_alias_map:
model = litellm.model_alias_map[model]
if model and model not in valid_token.models:
raise Exception(f"Token not allowed to access model")
return {
"api_key": valid_token.token
}
else:
raise Exception(f"Invalid token")
except Exception as e:
print(f"An exception occurred - {e}")
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail={"error": "invalid user key"},
)
def prisma_setup(database_url: Optional[str]):
global prisma_client
if database_url:
try:
import os
print("LiteLLM: DATABASE_URL Set in config, trying to 'pip install prisma'")
os.environ["DATABASE_URL"] = database_url
subprocess.run(['prisma', 'generate'])
subprocess.run(['prisma', 'db', 'push', '--accept-data-loss']) # this looks like a weird edge case when prisma just wont start on render. we need to have the --accept-data-loss
# Now you can import the Prisma Client
from prisma import Client
prisma_client = Client()
except Exception as e:
print("Error when initializing prisma, Ensure you run pip install prisma", e)
def celery_setup(use_queue: bool):
global celery_fn, celery_app_conn, async_result
print(f"value of use_queue: {use_queue}")
if use_queue:
from litellm.proxy.queue.celery_worker import start_worker
from litellm.proxy.queue.celery_app import celery_app, process_job
from celery.result import AsyncResult
start_worker(os.getcwd())
celery_fn = process_job
async_result = AsyncResult
celery_app_conn = celery_app
def cost_tracking():
global prisma_client, master_key
if prisma_client is not None and master_key is not None:
if isinstance(litellm.success_callback, list):
print("setting litellm success callback to track cost")
if (track_cost_callback) not in litellm.success_callback: # type: ignore
litellm.success_callback.append(track_cost_callback) # type: ignore
else:
litellm.success_callback = track_cost_callback # type: ignore
def track_cost_callback(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time = None,
end_time = None, # start/end time for completion
):
try:
# init logging config
print("in custom callback tracking cost", llm_model_list)
# check if it has collected an entire stream response
if "complete_streaming_response" in kwargs:
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
completion_response=kwargs["complete_streaming_response"]
input_text = kwargs["messages"]
output_text = completion_response["choices"][0]["message"]["content"]
response_cost = litellm.completion_cost(
model = kwargs["model"],
messages = input_text,
completion=output_text
)
print("streaming response_cost", response_cost)
# for non streaming responses
else:
# we pass the completion_response obj
if kwargs["stream"] != True:
input_text = kwargs.get("messages", "")
if isinstance(input_text, list):
input_text = "".join(m["content"] for m in input_text)
response_cost = litellm.completion_cost(completion_response=completion_response, completion=input_text)
print("regular response_cost", response_cost)
print(f"metadata in kwargs: {kwargs}")
user_api_key = kwargs["litellm_params"]["metadata"].get("user_api_key", None)
if user_api_key:
asyncio.run(update_prisma_database(token=user_api_key, response_cost=response_cost))
except Exception as e:
print(f"error in tracking cost callback - {str(e)}")
async def update_prisma_database(token, response_cost):
global prisma_client
try:
print(f"Enters prisma db call, token: {token}")
# Fetch the existing cost for the given token
existing_spend = await prisma_client.litellm_verificationtoken.find_unique(
where={
"token": token
}
)
print(f"existing spend: {existing_spend}")
# Calculate the new cost by adding the existing cost and response_cost
new_spend = existing_spend.spend + response_cost
print(f"new cost: {new_spend}")
# Update the cost column for the given token
await prisma_client.litellm_verificationtoken.update(
where={
"token": token
},
data={
"spend": new_spend
}
)
print(f"Prisma database updated for token {token}. New cost: {new_spend}")
except Exception as e:
print(f"Error updating Prisma database: {traceback.format_exc()}")
pass
def run_ollama_serve():
try:
command = ['ollama', 'serve']
with open(os.devnull, 'w') as devnull:
process = subprocess.Popen(command, stdout=devnull, stderr=devnull)
except Exception as e:
print(f"""
LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve`
""")
def load_router_config(router: Optional[litellm.Router], config_file_path: str):
global master_key
config = {}
try:
if os.path.exists(config_file_path):
with open(config_file_path, 'r') as file:
config = yaml.safe_load(file)
else:
raise Exception(f"Path to config does not exist, Current working directory: {os.getcwd()}, 'os.path.exists({config_file_path})' returned False")
except Exception as e:
raise Exception(f"Exception while reading Config: {e}")
print(f"Loaded config YAML:\n{json.dumps(config, indent=2)}")
## ENVIRONMENT VARIABLES
environment_variables = config.get('environment_variables', None)
if environment_variables:
for key, value in environment_variables.items():
os.environ[key] = value
## GENERAL SERVER SETTINGS (e.g. master key,..)
general_settings = config.get("general_settings", {})
if general_settings is None:
general_settings = {}
if general_settings:
### MASTER KEY ###
master_key = general_settings.get("master_key", None)
if master_key and master_key.startswith("os.environ/"):
master_key_env_name = master_key.replace("os.environ/", "")
master_key = os.getenv(master_key_env_name)
### CONNECT TO DATABASE ###
database_url = general_settings.get("database_url", None)
prisma_setup(database_url=database_url)
## COST TRACKING ##
cost_tracking()
### START REDIS QUEUE ###
use_queue = general_settings.get("use_queue", False)
celery_setup(use_queue=use_queue)
## LITELLM MODULE SETTINGS (e.g. litellm.drop_params=True,..)
litellm_settings = config.get('litellm_settings', None)
if litellm_settings:
# ANSI escape code for blue text
blue_color_code = "\033[94m"
reset_color_code = "\033[0m"
for key, value in litellm_settings.items():
if key == "cache":
print(f"{blue_color_code}\nSetting Cache on Proxy")
from litellm.caching import Cache
cache_type = value["type"]
cache_host = os.environ.get("REDIS_HOST")
cache_port = os.environ.get("REDIS_PORT")
cache_password = os.environ.get("REDIS_PASSWORD")
# Assuming cache_type, cache_host, cache_port, and cache_password are strings
print(f"{blue_color_code}Cache Type:{reset_color_code} {cache_type}")
print(f"{blue_color_code}Cache Host:{reset_color_code} {cache_host}")
print(f"{blue_color_code}Cache Port:{reset_color_code} {cache_port}")
print(f"{blue_color_code}Cache Password:{reset_color_code} {cache_password}")
print()
litellm.cache = Cache(
type=cache_type,
host=cache_host,
port=cache_port,
password=cache_password
)
else:
setattr(litellm, key, value)
## MODEL LIST
model_list = config.get('model_list', None)
if model_list:
router = litellm.Router(model_list=model_list, num_retries=3)
print(f"\033[32mLiteLLM: Proxy initialized with Config, Set models:\033[0m")
for model in model_list:
print(f"\033[32m {model.get('model_name', '')}\033[0m")
litellm_model_name = model["litellm_params"]["model"]
if "ollama" in litellm_model_name:
run_ollama_serve()
return router, model_list, general_settings
async def generate_key_helper_fn(duration_str: str, models: list, aliases: dict, config: dict, spend: float):
token = f"sk-{secrets.token_urlsafe(16)}"
def _duration_in_seconds(duration: str):
match = re.match(r"(\d+)([smhd]?)", duration)
if not match:
raise ValueError("Invalid duration format")
value, unit = match.groups()
value = int(value)
if unit == "s":
return value
elif unit == "m":
return value * 60
elif unit == "h":
return value * 3600
elif unit == "d":
return value * 86400
else:
raise ValueError("Unsupported duration unit")
duration = _duration_in_seconds(duration=duration_str)
expires = datetime.utcnow() + timedelta(seconds=duration)
aliases_json = json.dumps(aliases)
config_json = json.dumps(config)
try:
db = prisma_client
# Create a new verification token (you may want to enhance this logic based on your needs)
verification_token_data = {
"token": token,
"expires": expires,
"models": models,
"aliases": aliases_json,
"config": config_json,
"spend": spend
}
print(f"verification_token_data: {verification_token_data}")
new_verification_token = await db.litellm_verificationtoken.create( # type: ignore
{**verification_token_data} # type: ignore
)
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR)
return {"token": new_verification_token.token, "expires": new_verification_token.expires}
async def delete_verification_token(tokens: List[str]):
global prisma_client
try:
if prisma_client:
# Assuming 'db' is your Prisma Client instance
deleted_tokens = await prisma_client.litellm_verificationtoken.delete_many(
where={"token": {"in": tokens}}
)
else:
raise Exception
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR)
return deleted_tokens
async def generate_key_cli_task(duration_str):
task = asyncio.create_task(generate_key_helper_fn(duration_str=duration_str))
await task
def save_worker_config(**data):
import json
os.environ["WORKER_CONFIG"] = json.dumps(data)
def initialize(
model,
alias,
api_base,
api_version,
debug,
temperature,
max_tokens,
request_timeout,
max_budget,
telemetry,
drop_params,
add_function_to_prompt,
headers,
save,
config,
use_queue
):
global user_model, user_api_base, user_debug, user_max_tokens, user_request_timeout, user_temperature, user_telemetry, user_headers, experimental, llm_model_list, llm_router, general_settings
generate_feedback_box()
user_model = model
user_debug = debug
dynamic_config = {"general": {}, user_model: {}}
if config:
llm_router, llm_model_list, general_settings = load_router_config(router=llm_router, config_file_path=config)
if headers: # model-specific param
user_headers = headers
dynamic_config[user_model]["headers"] = headers
if api_base: # model-specific param
user_api_base = api_base
dynamic_config[user_model]["api_base"] = api_base
if api_version:
os.environ[
"AZURE_API_VERSION"
] = api_version # set this for azure - litellm can read this from the env
if max_tokens: # model-specific param
user_max_tokens = max_tokens
dynamic_config[user_model]["max_tokens"] = max_tokens
if temperature: # model-specific param
user_temperature = temperature
dynamic_config[user_model]["temperature"] = temperature
if request_timeout:
user_request_timeout = request_timeout
dynamic_config[user_model]["request_timeout"] = request_timeout
if alias: # model-specific param
dynamic_config[user_model]["alias"] = alias
if drop_params == True: # litellm-specific param
litellm.drop_params = True
dynamic_config["general"]["drop_params"] = True
if add_function_to_prompt == True: # litellm-specific param
litellm.add_function_to_prompt = True
dynamic_config["general"]["add_function_to_prompt"] = True
if max_budget: # litellm-specific param
litellm.max_budget = max_budget
dynamic_config["general"]["max_budget"] = max_budget
if debug==True: # litellm-specific param
litellm.set_verbose = True
if use_queue:
celery_setup(use_queue=use_queue)
if experimental:
pass
user_telemetry = telemetry
usage_telemetry(feature="local_proxy_server")
curl_command = """
curl --location 'http://0.0.0.0:8000/chat/completions' \\
--header 'Content-Type: application/json' \\
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
\n
"""
print()
print(f"\033[1;34mLiteLLM: Test your local proxy with: \"litellm --test\" This runs an openai.ChatCompletion request to your proxy [In a new terminal tab]\033[0m\n")
print(f"\033[1;34mLiteLLM: Curl Command Test for your local proxy\n {curl_command} \033[0m\n")
print("\033[1;34mDocs: https://docs.litellm.ai/docs/simple_proxy\033[0m\n")
# for streaming
def data_generator(response):
print_verbose("inside generator")
for chunk in response:
print_verbose(f"returned chunk: {chunk}")
try:
yield f"data: {json.dumps(chunk.dict())}\n\n"
except:
yield f"data: {json.dumps(chunk)}\n\n"
async def async_data_generator(response):
print_verbose("inside generator")
async for chunk in response:
print_verbose(f"returned chunk: {chunk}")
try:
yield f"data: {json.dumps(chunk.dict())}\n\n"
except:
yield f"data: {json.dumps(chunk)}\n\n"
def litellm_completion(*args, **kwargs):
global user_temperature, user_request_timeout, user_max_tokens, user_api_base
call_type = kwargs.pop("call_type")
# override with user settings, these are params passed via cli
if user_temperature:
kwargs["temperature"] = user_temperature
if user_request_timeout:
kwargs["request_timeout"] = user_request_timeout
if user_max_tokens:
kwargs["max_tokens"] = user_max_tokens
if user_api_base:
kwargs["api_base"] = user_api_base
## ROUTE TO CORRECT ENDPOINT ##
router_model_names = [m["model_name"] for m in llm_model_list] if llm_model_list is not None else []
try:
if llm_router is not None and kwargs["model"] in router_model_names: # model in router model list
if call_type == "chat_completion":
response = llm_router.completion(*args, **kwargs)
elif call_type == "text_completion":
response = llm_router.text_completion(*args, **kwargs)
else:
if call_type == "chat_completion":
response = litellm.completion(*args, **kwargs)
elif call_type == "text_completion":
response = litellm.text_completion(*args, **kwargs)
except Exception as e:
raise e
if 'stream' in kwargs and kwargs['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(data_generator(response), media_type='text/event-stream')
return response
@app.on_event("startup")
async def startup_event():
global prisma_client
import json
worker_config = json.loads(os.getenv("WORKER_CONFIG"))
initialize(**worker_config)
if prisma_client:
await prisma_client.connect()
@app.on_event("shutdown")
async def shutdown_event():
global prisma_client
if prisma_client:
print("Disconnecting from Prisma")
await prisma_client.disconnect()
#### API ENDPOINTS ####
@router.get("/v1/models", dependencies=[Depends(user_api_key_auth)])
@router.get("/models", dependencies=[Depends(user_api_key_auth)]) # if project requires model list
def model_list():
global llm_model_list, general_settings
all_models = []
if general_settings.get("infer_model_from_keys", False):
all_models = litellm.utils.get_valid_models()
if llm_model_list:
all_models = list(set(all_models + [m["model_name"] for m in llm_model_list]))
if user_model is not None:
all_models += [user_model]
print_verbose(f"all_models: {all_models}")
### CHECK OLLAMA MODELS ###
try:
response = requests.get("http://0.0.0.0:11434/api/tags")
models = response.json()["models"]
ollama_models = ["ollama/" + m["name"].replace(":latest", "") for m in models]
all_models.extend(ollama_models)
except Exception as e:
pass
return dict(
data=[
{
"id": model,
"object": "model",
"created": 1677610602,
"owned_by": "openai",
}
for model in all_models
],
object="list",
)
@router.post("/v1/completions", dependencies=[Depends(user_api_key_auth)])
@router.post("/completions", dependencies=[Depends(user_api_key_auth)])
@router.post("/engines/{model:path}/completions", dependencies=[Depends(user_api_key_auth)])
async def completion(request: Request, model: Optional[str] = None, user_api_key_dict: dict = Depends(user_api_key_auth)):
try:
body = await request.body()
body_str = body.decode()
try:
data = ast.literal_eval(body_str)
except:
data = json.loads(body_str)
data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
or model # for azure deployments
or data["model"] # default passed in http request
)
if user_model:
data["model"] = user_model
data["call_type"] = "text_completion"
if "metadata" in data:
data["metadata"]["user_api_key"] = user_api_key_dict["api_key"]
else:
data["metadata"] = {"user_api_key": user_api_key_dict["api_key"]}
return litellm_completion(
**data
)
except Exception as e:
print(f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`")
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}\n\n{error_traceback}"
try:
status = e.status_code # type: ignore
except:
status = 500
raise HTTPException(
status_code=status,
detail=error_msg
)
@router.post("/v1/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"])
@router.post("/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"])
@router.post("/openai/deployments/{model:path}/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"]) # azure compatible endpoint
async def chat_completion(request: ChatCompletionRequest, model: Optional[str] = None, user_api_key_dict: dict = Depends(user_api_key_auth)) -> litellm.ModelResponse:
global general_settings, user_debug
try:
data = {}
request_items = request.model_dump()
data = {key: value for key, value in request_items.items() if value is not None} # pydantic sets all values to None, filter out None values here
print_verbose(f"receiving data: {data}")
data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
or model # for azure deployments
or data["model"] # default passed in http request
)
if "metadata" in data:
data["metadata"]["user_api_key"] = user_api_key_dict["api_key"]
else:
data["metadata"] = {"user_api_key": user_api_key_dict["api_key"]}
global user_temperature, user_request_timeout, user_max_tokens, user_api_base
# override with user settings, these are params passed via cli
if user_temperature:
data["temperature"] = user_temperature
if user_request_timeout:
data["request_timeout"] = user_request_timeout
if user_max_tokens:
data["max_tokens"] = user_max_tokens
if user_api_base:
data["api_base"] = user_api_base
router_model_names = [m["model_name"] for m in llm_model_list] if llm_model_list is not None else []
if llm_router is not None and data["model"] in router_model_names: # model in router model list
response = await llm_router.acompletion(**data)
else:
response = await litellm.acompletion(**data)
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(async_data_generator(response), media_type='text/event-stream')
return response
except Exception as e:
print(f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`")
router_model_names = [m["model_name"] for m in llm_model_list] if llm_model_list is not None else []
if llm_router is not None and data.get("model", "") in router_model_names:
print("Results from router")
print("\nRouter stats")
print("\nTotal Calls made")
for key, value in llm_router.total_calls.items():
print(f"{key}: {value}")
print("\nSuccess Calls made")
for key, value in llm_router.success_calls.items():
print(f"{key}: {value}")
print("\nFail Calls made")
for key, value in llm_router.fail_calls.items():
print(f"{key}: {value}")
if user_debug:
traceback.print_exc()
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}\n\n{error_traceback}"
try:
status = e.status_code # type: ignore
except:
status = 500
raise HTTPException(
status_code=status,
detail=error_msg
)
@router.post("/v1/embeddings", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse)
@router.post("/embeddings", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse)
async def embeddings(request: Request, user_api_key_dict: dict = Depends(user_api_key_auth)):
try:
# Use orjson to parse JSON data, orjson speeds up requests significantly
body = await request.body()
data = orjson.loads(body)
data["model"] = (
general_settings.get("embedding_model", None) # server default
or user_model # model name passed via cli args
or data["model"] # default passed in http request
)
if user_model:
data["model"] = user_model
if "metadata" in data:
data["metadata"]["user_api_key"] = user_api_key_dict["api_key"]
else:
data["metadata"] = {"user_api_key": user_api_key_dict["api_key"]}
## ROUTE TO CORRECT ENDPOINT ##
router_model_names = [m["model_name"] for m in llm_model_list] if llm_model_list is not None else []
if llm_router is not None and data["model"] in router_model_names: # model in router model list
response = await llm_router.aembedding(**data)
else:
response = await litellm.aembedding(**data)
return response
except Exception as e:
traceback.print_exc()
raise e
except Exception as e:
pass
#### KEY MANAGEMENT ####
@router.post("/key/generate", dependencies=[Depends(user_api_key_auth)])
async def generate_key_fn(request: Request):
data = await request.json()
duration_str = data.get("duration", "1h") # Default to 1 hour if duration is not provided
models = data.get("models", []) # Default to an empty list (meaning allow token to call all models)
aliases = data.get("aliases", {}) # Default to an empty dict (no alias mappings, on top of anything in the config.yaml model_list)
config = data.get("config", {})
spend = data.get("spend", 0)
if isinstance(models, list):
response = await generate_key_helper_fn(duration_str=duration_str, models=models, aliases=aliases, config=config, spend=spend)
return {"key": response["token"], "expires": response["expires"]}
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={"error": "models param must be a list"},
)
@router.post("/key/delete", dependencies=[Depends(user_api_key_auth)])
async def delete_key_fn(request: Request):
try:
data = await request.json()
keys = data.get("keys", [])
if not isinstance(keys, list):
if isinstance(keys, str):
keys = [keys]
else:
raise Exception(f"keys must be an instance of either a string or a list")
deleted_keys = await delete_verification_token(tokens=keys)
assert len(keys) == deleted_keys
return {"deleted_keys": keys}
except Exception as e:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={"error": str(e)},
)
@router.get("/key/info", dependencies=[Depends(user_api_key_auth)])
async def info_key_fn(key: str = fastapi.Query(..., description="Key in the request parameters")):
global prisma_client
try:
if prisma_client is None:
raise Exception(f"Database not connected. Connect a database to your proxy - https://docs.litellm.ai/docs/simple_proxy#managing-auth---virtual-keys")
key_info = await prisma_client.litellm_verificationtoken.find_unique(
where={
"token": key
}
)
return {"key": key, "info": key_info}
except Exception as e:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={"error": str(e)},
)
#### MODEL MANAGEMENT ####
#### [BETA] - This is a beta endpoint, format might change based on user feedback. - https://github.com/BerriAI/litellm/issues/933
@router.get("/model/info", description="Provides more info about each model in /models, including config.yaml descriptions (except api key and api base)", tags=["model management"], dependencies=[Depends(user_api_key_auth)])
async def model_info(request: Request):
global llm_model_list, general_settings
all_models = []
if llm_model_list is not None:
for m in llm_model_list:
model_dict = {}
model_name = m["model_name"]
model_params = {}
for k,v in m["litellm_params"].items():
if k == "api_key" or k == "api_base": # don't send the api key or api base
continue
if k == "model":
########## remove -ModelID-XXXX from model ##############
original_model_string = v
# Find the index of "ModelID" in the string
index_of_model_id = original_model_string.find("-ModelID")
# Remove everything after "-ModelID" if it exists
if index_of_model_id != -1:
v = original_model_string[:index_of_model_id]
else:
v = original_model_string
model_params[k] = v
model_dict["model_name"] = model_name
model_dict["model_params"] = model_params
all_models.append(model_dict)
# all_models = list(set([m["model_name"] for m in llm_model_list]))
print_verbose(f"all_models: {all_models}")
return dict(
data=[
{
"id": model,
"object": "model",
"created": 1677610602,
"owned_by": "openai",
}
for model in all_models
],
object="list",
)
pass
#### EXPERIMENTAL QUEUING ####
@router.post("/queue/request", dependencies=[Depends(user_api_key_auth)])
async def async_queue_request(request: Request):
global celery_fn, llm_model_list
if celery_fn is not None:
body = await request.body()
body_str = body.decode()
try:
data = ast.literal_eval(body_str)
except:
data = json.loads(body_str)
data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
or data["model"] # default passed in http request
)
data["llm_model_list"] = llm_model_list
print(f"data: {data}")
job = celery_fn.apply_async(kwargs=data)
return {"id": job.id, "url": f"/queue/response/{job.id}", "eta": 5, "status": "queued"}
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={"error": "Queue not initialized"},
)
@router.get("/queue/response/{task_id}", dependencies=[Depends(user_api_key_auth)])
async def async_queue_response(request: Request, task_id: str):
global celery_app_conn, async_result
try:
if celery_app_conn is not None and async_result is not None:
job = async_result(task_id, app=celery_app_conn)
if job.ready():
return {"status": "finished", "result": job.result}
else:
return {'status': 'queued'}
else:
raise Exception()
except Exception as e:
return {"status": "finished", "result": str(e)}
@router.get("/ollama_logs", dependencies=[Depends(user_api_key_auth)])
async def retrieve_server_log(request: Request):
filepath = os.path.expanduser("~/.ollama/logs/server.log")
return FileResponse(filepath)
#### BASIC ENDPOINTS ####
@router.get("/test")
async def test_endpoint(request: Request):
return {"route": request.url.path}
@router.get("/health", description="Check the health of all the endpoints in config.yaml", tags=["health"])
async def health_endpoint(request: Request, model: Optional[str] = fastapi.Query(None, description="Specify the model name (optional)")):
global llm_model_list
healthy_endpoints = []
unhealthy_endpoints = []
if llm_model_list:
for model_name in llm_model_list:
try:
if model is None or model == model_name["litellm_params"]["model"]: # if model specified, just call that one.
litellm_params = model_name["litellm_params"]
model_name = litellm.utils.remove_model_id(litellm_params["model"]) # removes, ids set by litellm.router
if model_name not in litellm.all_embedding_models: # filter out embedding models
litellm_params["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]
litellm_params["model"] = model_name
litellm.completion(**litellm_params)
cleaned_params = {}
for key in litellm_params:
if key != "api_key" and key != "messages":
cleaned_params[key] = litellm_params[key]
healthy_endpoints.append(cleaned_params)
except Exception as e:
print("Got Exception", e)
cleaned_params = {}
for key in litellm_params:
if key != "api_key" and key != "messages":
cleaned_params[key] = litellm_params[key]
unhealthy_endpoints.append(cleaned_params)
pass
return {
"healthy_endpoints": healthy_endpoints,
"unhealthy_endpoints": unhealthy_endpoints
}
@router.get("/")
async def home(request: Request):
return "LiteLLM: RUNNING"
@router.get("/routes")
async def get_routes():
"""
Get a list of available routes in the FastAPI application.
"""
routes = []
for route in app.routes:
route_info = {
"path": route.path,
"methods": route.methods,
"name": route.name,
"endpoint": route.endpoint.__name__ if route.endpoint else None,
}
routes.append(route_info)
return {"routes": routes}
app.include_router(router)