mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
1322 lines
49 KiB
Python
1322 lines
49 KiB
Python
import os, types
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable, Optional, Union, List
|
|
from litellm.utils import ModelResponse, Usage, CustomStreamWrapper, map_finish_reason
|
|
import litellm, uuid
|
|
import httpx, inspect
|
|
|
|
|
|
class VertexAIError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST", url=" https://cloud.google.com/vertex-ai/"
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class ExtendedGenerationConfig(dict):
|
|
"""Extended parameters for the generation."""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
temperature: Optional[float] = None,
|
|
top_p: Optional[float] = None,
|
|
top_k: Optional[int] = None,
|
|
candidate_count: Optional[int] = None,
|
|
max_output_tokens: Optional[int] = None,
|
|
stop_sequences: Optional[List[str]] = None,
|
|
response_mime_type: Optional[str] = None,
|
|
frequency_penalty: Optional[float] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
):
|
|
super().__init__(
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
candidate_count=candidate_count,
|
|
max_output_tokens=max_output_tokens,
|
|
stop_sequences=stop_sequences,
|
|
response_mime_type=response_mime_type,
|
|
frequency_penalty=frequency_penalty,
|
|
presence_penalty=presence_penalty,
|
|
)
|
|
|
|
|
|
class VertexAIConfig:
|
|
"""
|
|
Reference: https://cloud.google.com/vertex-ai/docs/generative-ai/chat/test-chat-prompts
|
|
Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
|
|
|
|
The class `VertexAIConfig` provides configuration for the VertexAI's API interface. Below are the parameters:
|
|
|
|
- `temperature` (float): This controls the degree of randomness in token selection.
|
|
|
|
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
|
|
|
|
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
|
|
|
|
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
|
|
|
|
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'.
|
|
|
|
- `candidate_count` (int): Number of generated responses to return.
|
|
|
|
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
|
|
|
|
- `frequency_penalty` (float): This parameter is used to penalize the model from repeating the same output. The default value is 0.0.
|
|
|
|
- `presence_penalty` (float): This parameter is used to penalize the model from generating the same output as the input. The default value is 0.0.
|
|
|
|
Note: Please make sure to modify the default parameters as required for your use case.
|
|
"""
|
|
|
|
temperature: Optional[float] = None
|
|
max_output_tokens: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
top_k: Optional[int] = None
|
|
response_mime_type: Optional[str] = None
|
|
candidate_count: Optional[int] = None
|
|
stop_sequences: Optional[list] = None
|
|
frequency_penalty: Optional[float] = None
|
|
presence_penalty: Optional[float] = None
|
|
|
|
def __init__(
|
|
self,
|
|
temperature: Optional[float] = None,
|
|
max_output_tokens: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
top_k: Optional[int] = None,
|
|
response_mime_type: Optional[str] = None,
|
|
candidate_count: Optional[int] = None,
|
|
stop_sequences: Optional[list] = None,
|
|
frequency_penalty: Optional[float] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
def get_supported_openai_params(self):
|
|
return [
|
|
"temperature",
|
|
"top_p",
|
|
"max_tokens",
|
|
"stream",
|
|
"tools",
|
|
"tool_choice",
|
|
"response_format",
|
|
"n",
|
|
"stop",
|
|
]
|
|
|
|
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
|
for param, value in non_default_params.items():
|
|
if param == "temperature":
|
|
optional_params["temperature"] = value
|
|
if param == "top_p":
|
|
optional_params["top_p"] = value
|
|
if param == "stream":
|
|
optional_params["stream"] = value
|
|
if param == "n":
|
|
optional_params["candidate_count"] = value
|
|
if param == "stop":
|
|
if isinstance(value, str):
|
|
optional_params["stop_sequences"] = [value]
|
|
elif isinstance(value, list):
|
|
optional_params["stop_sequences"] = value
|
|
if param == "max_tokens":
|
|
optional_params["max_output_tokens"] = value
|
|
if param == "response_format" and value["type"] == "json_object":
|
|
optional_params["response_mime_type"] = "application/json"
|
|
if param == "frequency_penalty":
|
|
optional_params["frequency_penalty"] = value
|
|
if param == "presence_penalty":
|
|
optional_params["presence_penalty"] = value
|
|
if param == "tools" and isinstance(value, list):
|
|
from vertexai.preview import generative_models
|
|
|
|
gtool_func_declarations = []
|
|
for tool in value:
|
|
gtool_func_declaration = generative_models.FunctionDeclaration(
|
|
name=tool["function"]["name"],
|
|
description=tool["function"].get("description", ""),
|
|
parameters=tool["function"].get("parameters", {}),
|
|
)
|
|
gtool_func_declarations.append(gtool_func_declaration)
|
|
optional_params["tools"] = [
|
|
generative_models.Tool(
|
|
function_declarations=gtool_func_declarations
|
|
)
|
|
]
|
|
if param == "tool_choice" and (
|
|
isinstance(value, str) or isinstance(value, dict)
|
|
):
|
|
pass
|
|
return optional_params
|
|
|
|
|
|
import asyncio
|
|
|
|
|
|
class TextStreamer:
|
|
"""
|
|
Fake streaming iterator for Vertex AI Model Garden calls
|
|
"""
|
|
|
|
def __init__(self, text):
|
|
self.text = text.split() # let's assume words as a streaming unit
|
|
self.index = 0
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.index < len(self.text):
|
|
result = self.text[self.index]
|
|
self.index += 1
|
|
return result
|
|
else:
|
|
raise StopIteration
|
|
|
|
def __aiter__(self):
|
|
return self
|
|
|
|
async def __anext__(self):
|
|
if self.index < len(self.text):
|
|
result = self.text[self.index]
|
|
self.index += 1
|
|
return result
|
|
else:
|
|
raise StopAsyncIteration # once we run out of data to stream, we raise this error
|
|
|
|
|
|
def _get_image_bytes_from_url(image_url: str) -> bytes:
|
|
try:
|
|
response = requests.get(image_url)
|
|
response.raise_for_status() # Raise an error for bad responses (4xx and 5xx)
|
|
image_bytes = response.content
|
|
return image_bytes
|
|
except requests.exceptions.RequestException as e:
|
|
# Handle any request exceptions (e.g., connection error, timeout)
|
|
return b"" # Return an empty bytes object or handle the error as needed
|
|
|
|
|
|
def _load_image_from_url(image_url: str):
|
|
"""
|
|
Loads an image from a URL.
|
|
|
|
Args:
|
|
image_url (str): The URL of the image.
|
|
|
|
Returns:
|
|
Image: The loaded image.
|
|
"""
|
|
from vertexai.preview.generative_models import (
|
|
GenerativeModel,
|
|
Part,
|
|
GenerationConfig,
|
|
Image,
|
|
)
|
|
|
|
image_bytes = _get_image_bytes_from_url(image_url)
|
|
return Image.from_bytes(image_bytes)
|
|
|
|
|
|
def _gemini_vision_convert_messages(messages: list):
|
|
"""
|
|
Converts given messages for GPT-4 Vision to Gemini format.
|
|
|
|
Args:
|
|
messages (list): The messages to convert. Each message can be a dictionary with a "content" key. The content can be a string or a list of elements. If it is a string, it will be concatenated to the prompt. If it is a list, each element will be processed based on its type:
|
|
- If the element is a dictionary with a "type" key equal to "text", its "text" value will be concatenated to the prompt.
|
|
- If the element is a dictionary with a "type" key equal to "image_url", its "image_url" value will be added to the list of images.
|
|
|
|
Returns:
|
|
tuple: A tuple containing the prompt (a string) and the processed images (a list of objects representing the images).
|
|
|
|
Raises:
|
|
VertexAIError: If the import of the 'vertexai' module fails, indicating that 'google-cloud-aiplatform' needs to be installed.
|
|
Exception: If any other exception occurs during the execution of the function.
|
|
|
|
Note:
|
|
This function is based on the code from the 'gemini/getting-started/intro_gemini_python.ipynb' notebook in the 'generative-ai' repository on GitHub.
|
|
The supported MIME types for images include 'image/png' and 'image/jpeg'.
|
|
|
|
Examples:
|
|
>>> messages = [
|
|
... {"content": "Hello, world!"},
|
|
... {"content": [{"type": "text", "text": "This is a text message."}, {"type": "image_url", "image_url": "example.com/image.png"}]},
|
|
... ]
|
|
>>> _gemini_vision_convert_messages(messages)
|
|
('Hello, world!This is a text message.', [<Part object>, <Part object>])
|
|
"""
|
|
try:
|
|
import vertexai
|
|
except:
|
|
raise VertexAIError(
|
|
status_code=400,
|
|
message="vertexai import failed please run `pip install google-cloud-aiplatform`",
|
|
)
|
|
try:
|
|
from vertexai.preview.language_models import (
|
|
ChatModel,
|
|
CodeChatModel,
|
|
InputOutputTextPair,
|
|
)
|
|
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
|
from vertexai.preview.generative_models import (
|
|
GenerativeModel,
|
|
Part,
|
|
GenerationConfig,
|
|
Image,
|
|
)
|
|
|
|
# given messages for gpt-4 vision, convert them for gemini
|
|
# https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_python.ipynb
|
|
prompt = ""
|
|
images = []
|
|
for message in messages:
|
|
if isinstance(message["content"], str):
|
|
prompt += message["content"]
|
|
elif isinstance(message["content"], list):
|
|
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
|
|
for element in message["content"]:
|
|
if isinstance(element, dict):
|
|
if element["type"] == "text":
|
|
prompt += element["text"]
|
|
elif element["type"] == "image_url":
|
|
image_url = element["image_url"]["url"]
|
|
images.append(image_url)
|
|
# processing images passed to gemini
|
|
processed_images = []
|
|
for img in images:
|
|
if "gs://" in img:
|
|
# Case 1: Images with Cloud Storage URIs
|
|
# The supported MIME types for images include image/png and image/jpeg.
|
|
part_mime = "image/png" if "png" in img else "image/jpeg"
|
|
google_clooud_part = Part.from_uri(img, mime_type=part_mime)
|
|
processed_images.append(google_clooud_part)
|
|
elif "https:/" in img:
|
|
# Case 2: Images with direct links
|
|
image = _load_image_from_url(img)
|
|
processed_images.append(image)
|
|
elif ".mp4" in img and "gs://" in img:
|
|
# Case 3: Videos with Cloud Storage URIs
|
|
part_mime = "video/mp4"
|
|
google_clooud_part = Part.from_uri(img, mime_type=part_mime)
|
|
processed_images.append(google_clooud_part)
|
|
elif "base64" in img:
|
|
# Case 4: Images with base64 encoding
|
|
import base64, re
|
|
|
|
# base 64 is passed as data:image/jpeg;base64,<base-64-encoded-image>
|
|
image_metadata, img_without_base_64 = img.split(",")
|
|
|
|
# read mime_type from img_without_base_64=data:image/jpeg;base64
|
|
# Extract MIME type using regular expression
|
|
mime_type_match = re.match(r"data:(.*?);base64", image_metadata)
|
|
|
|
if mime_type_match:
|
|
mime_type = mime_type_match.group(1)
|
|
else:
|
|
mime_type = "image/jpeg"
|
|
decoded_img = base64.b64decode(img_without_base_64)
|
|
processed_image = Part.from_data(data=decoded_img, mime_type=mime_type)
|
|
processed_images.append(processed_image)
|
|
return prompt, processed_images
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
vertex_project=None,
|
|
vertex_location=None,
|
|
vertex_credentials=None,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
acompletion: bool = False,
|
|
):
|
|
try:
|
|
import vertexai
|
|
except:
|
|
raise VertexAIError(
|
|
status_code=400,
|
|
message="vertexai import failed please run `pip install google-cloud-aiplatform`",
|
|
)
|
|
|
|
if not (
|
|
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
|
|
):
|
|
raise VertexAIError(
|
|
status_code=400,
|
|
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
|
|
)
|
|
try:
|
|
from vertexai.preview.language_models import (
|
|
ChatModel,
|
|
CodeChatModel,
|
|
InputOutputTextPair,
|
|
)
|
|
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
|
from vertexai.preview.generative_models import (
|
|
GenerativeModel,
|
|
Part,
|
|
GenerationConfig,
|
|
)
|
|
from google.cloud import aiplatform # type: ignore
|
|
from google.protobuf import json_format # type: ignore
|
|
from google.protobuf.struct_pb2 import Value # type: ignore
|
|
from google.cloud.aiplatform_v1beta1.types import content as gapic_content_types # type: ignore
|
|
import google.auth # type: ignore
|
|
|
|
## Load credentials with the correct quota project ref: https://github.com/googleapis/python-aiplatform/issues/2557#issuecomment-1709284744
|
|
print_verbose(
|
|
f"VERTEX AI: vertex_project={vertex_project}; vertex_location={vertex_location}"
|
|
)
|
|
if vertex_credentials is not None and isinstance(vertex_credentials, str):
|
|
import google.oauth2.service_account
|
|
|
|
json_obj = json.loads(vertex_credentials)
|
|
|
|
creds = google.oauth2.service_account.Credentials.from_service_account_info(
|
|
json_obj,
|
|
scopes=["https://www.googleapis.com/auth/cloud-platform"],
|
|
)
|
|
else:
|
|
creds, _ = google.auth.default(quota_project_id=vertex_project)
|
|
print_verbose(
|
|
f"VERTEX AI: creds={creds}; google application credentials: {os.getenv('GOOGLE_APPLICATION_CREDENTIALS')}"
|
|
)
|
|
vertexai.init(
|
|
project=vertex_project, location=vertex_location, credentials=creds
|
|
)
|
|
|
|
## Load Config
|
|
config = litellm.VertexAIConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in optional_params:
|
|
optional_params[k] = v
|
|
|
|
## Process safety settings into format expected by vertex AI
|
|
safety_settings = None
|
|
if "safety_settings" in optional_params:
|
|
safety_settings = optional_params.pop("safety_settings")
|
|
if not isinstance(safety_settings, list):
|
|
raise ValueError("safety_settings must be a list")
|
|
if len(safety_settings) > 0 and not isinstance(safety_settings[0], dict):
|
|
raise ValueError("safety_settings must be a list of dicts")
|
|
safety_settings = [
|
|
gapic_content_types.SafetySetting(x) for x in safety_settings
|
|
]
|
|
|
|
# vertexai does not use an API key, it looks for credentials.json in the environment
|
|
|
|
prompt = " ".join(
|
|
[
|
|
message["content"]
|
|
for message in messages
|
|
if isinstance(message["content"], str)
|
|
]
|
|
)
|
|
|
|
mode = ""
|
|
|
|
request_str = ""
|
|
response_obj = None
|
|
async_client = None
|
|
instances = None
|
|
client_options = {
|
|
"api_endpoint": f"{vertex_location}-aiplatform.googleapis.com"
|
|
}
|
|
if (
|
|
model in litellm.vertex_language_models
|
|
or model in litellm.vertex_vision_models
|
|
):
|
|
llm_model = GenerativeModel(model)
|
|
mode = "vision"
|
|
request_str += f"llm_model = GenerativeModel({model})\n"
|
|
elif model in litellm.vertex_chat_models:
|
|
llm_model = ChatModel.from_pretrained(model)
|
|
mode = "chat"
|
|
request_str += f"llm_model = ChatModel.from_pretrained({model})\n"
|
|
elif model in litellm.vertex_text_models:
|
|
llm_model = TextGenerationModel.from_pretrained(model)
|
|
mode = "text"
|
|
request_str += f"llm_model = TextGenerationModel.from_pretrained({model})\n"
|
|
elif model in litellm.vertex_code_text_models:
|
|
llm_model = CodeGenerationModel.from_pretrained(model)
|
|
mode = "text"
|
|
request_str += f"llm_model = CodeGenerationModel.from_pretrained({model})\n"
|
|
elif model in litellm.vertex_code_chat_models: # vertex_code_llm_models
|
|
llm_model = CodeChatModel.from_pretrained(model)
|
|
mode = "chat"
|
|
request_str += f"llm_model = CodeChatModel.from_pretrained({model})\n"
|
|
elif model == "private":
|
|
mode = "private"
|
|
model = optional_params.pop("model_id", None)
|
|
# private endpoint requires a dict instead of JSON
|
|
instances = [optional_params.copy()]
|
|
instances[0]["prompt"] = prompt
|
|
llm_model = aiplatform.PrivateEndpoint(
|
|
endpoint_name=model,
|
|
project=vertex_project,
|
|
location=vertex_location,
|
|
)
|
|
request_str += f"llm_model = aiplatform.PrivateEndpoint(endpoint_name={model}, project={vertex_project}, location={vertex_location})\n"
|
|
else: # assume vertex model garden on public endpoint
|
|
mode = "custom"
|
|
|
|
instances = [optional_params.copy()]
|
|
instances[0]["prompt"] = prompt
|
|
instances = [
|
|
json_format.ParseDict(instance_dict, Value())
|
|
for instance_dict in instances
|
|
]
|
|
# Will determine the API used based on async parameter
|
|
llm_model = None
|
|
|
|
# NOTE: async prediction and streaming under "private" mode isn't supported by aiplatform right now
|
|
if acompletion == True:
|
|
data = {
|
|
"llm_model": llm_model,
|
|
"mode": mode,
|
|
"prompt": prompt,
|
|
"logging_obj": logging_obj,
|
|
"request_str": request_str,
|
|
"model": model,
|
|
"model_response": model_response,
|
|
"encoding": encoding,
|
|
"messages": messages,
|
|
"print_verbose": print_verbose,
|
|
"client_options": client_options,
|
|
"instances": instances,
|
|
"vertex_location": vertex_location,
|
|
"vertex_project": vertex_project,
|
|
**optional_params,
|
|
}
|
|
if optional_params.get("stream", False) is True:
|
|
# async streaming
|
|
return async_streaming(**data)
|
|
|
|
return async_completion(**data)
|
|
|
|
if mode == "vision":
|
|
print_verbose("\nMaking VertexAI Gemini Pro / Pro Vision Call")
|
|
print_verbose(f"\nProcessing input messages = {messages}")
|
|
tools = optional_params.pop("tools", None)
|
|
prompt, images = _gemini_vision_convert_messages(messages=messages)
|
|
content = [prompt] + images
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
stream = optional_params.pop("stream")
|
|
request_str += f"response = llm_model.generate_content({content}, generation_config=GenerationConfig(**{optional_params}), safety_settings={safety_settings}, stream={stream})\n"
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
|
|
model_response = llm_model.generate_content(
|
|
contents=content,
|
|
generation_config=optional_params,
|
|
safety_settings=safety_settings,
|
|
stream=True,
|
|
tools=tools,
|
|
)
|
|
|
|
return model_response
|
|
|
|
request_str += f"response = llm_model.generate_content({content})\n"
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
|
|
## LLM Call
|
|
response = llm_model.generate_content(
|
|
contents=content,
|
|
generation_config=optional_params,
|
|
safety_settings=safety_settings,
|
|
tools=tools,
|
|
)
|
|
|
|
if tools is not None and bool(
|
|
getattr(response.candidates[0].content.parts[0], "function_call", None)
|
|
):
|
|
function_call = response.candidates[0].content.parts[0].function_call
|
|
args_dict = {}
|
|
for k, v in function_call.args.items():
|
|
args_dict[k] = v
|
|
args_str = json.dumps(args_dict)
|
|
message = litellm.Message(
|
|
content=None,
|
|
tool_calls=[
|
|
{
|
|
"id": f"call_{str(uuid.uuid4())}",
|
|
"function": {
|
|
"arguments": args_str,
|
|
"name": function_call.name,
|
|
},
|
|
"type": "function",
|
|
}
|
|
],
|
|
)
|
|
completion_response = message
|
|
else:
|
|
completion_response = response.text
|
|
response_obj = response._raw_response
|
|
optional_params["tools"] = tools
|
|
elif mode == "chat":
|
|
chat = llm_model.start_chat()
|
|
request_str += f"chat = llm_model.start_chat()\n"
|
|
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
|
|
# we handle this by removing 'stream' from optional params and sending the request
|
|
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
|
|
optional_params.pop(
|
|
"stream", None
|
|
) # vertex ai raises an error when passing stream in optional params
|
|
request_str += (
|
|
f"chat.send_message_streaming({prompt}, **{optional_params})\n"
|
|
)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
model_response = chat.send_message_streaming(prompt, **optional_params)
|
|
|
|
return model_response
|
|
|
|
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
completion_response = chat.send_message(prompt, **optional_params).text
|
|
elif mode == "text":
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
optional_params.pop(
|
|
"stream", None
|
|
) # See note above on handling streaming for vertex ai
|
|
request_str += (
|
|
f"llm_model.predict_streaming({prompt}, **{optional_params})\n"
|
|
)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
model_response = llm_model.predict_streaming(prompt, **optional_params)
|
|
|
|
return model_response
|
|
|
|
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
completion_response = llm_model.predict(prompt, **optional_params).text
|
|
elif mode == "custom":
|
|
"""
|
|
Vertex AI Model Garden
|
|
"""
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
llm_model = aiplatform.gapic.PredictionServiceClient(
|
|
client_options=client_options
|
|
)
|
|
request_str += f"llm_model = aiplatform.gapic.PredictionServiceClient(client_options={client_options})\n"
|
|
endpoint_path = llm_model.endpoint_path(
|
|
project=vertex_project, location=vertex_location, endpoint=model
|
|
)
|
|
request_str += (
|
|
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
|
|
)
|
|
response = llm_model.predict(
|
|
endpoint=endpoint_path, instances=instances
|
|
).predictions
|
|
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
response = TextStreamer(completion_response)
|
|
return response
|
|
elif mode == "private":
|
|
"""
|
|
Vertex AI Model Garden deployed on private endpoint
|
|
"""
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
request_str += f"llm_model.predict(instances={instances})\n"
|
|
response = llm_model.predict(instances=instances).predictions
|
|
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
response = TextStreamer(completion_response)
|
|
return response
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt, api_key=None, original_response=completion_response
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
if isinstance(completion_response, litellm.Message):
|
|
model_response["choices"][0]["message"] = completion_response
|
|
elif len(str(completion_response)) > 0:
|
|
model_response["choices"][0]["message"]["content"] = str(
|
|
completion_response
|
|
)
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = model
|
|
## CALCULATING USAGE
|
|
if model in litellm.vertex_language_models and response_obj is not None:
|
|
model_response["choices"][0].finish_reason = map_finish_reason(
|
|
response_obj.candidates[0].finish_reason.name
|
|
)
|
|
usage = Usage(
|
|
prompt_tokens=response_obj.usage_metadata.prompt_token_count,
|
|
completion_tokens=response_obj.usage_metadata.candidates_token_count,
|
|
total_tokens=response_obj.usage_metadata.total_token_count,
|
|
)
|
|
else:
|
|
# init prompt tokens
|
|
# this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
|
|
prompt_tokens, completion_tokens, total_tokens = 0, 0, 0
|
|
if response_obj is not None:
|
|
if hasattr(response_obj, "usage_metadata") and hasattr(
|
|
response_obj.usage_metadata, "prompt_token_count"
|
|
):
|
|
prompt_tokens = response_obj.usage_metadata.prompt_token_count
|
|
completion_tokens = (
|
|
response_obj.usage_metadata.candidates_token_count
|
|
)
|
|
else:
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(
|
|
model_response["choices"][0]["message"].get("content", "")
|
|
)
|
|
)
|
|
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
model_response.usage = usage
|
|
return model_response
|
|
except Exception as e:
|
|
raise VertexAIError(status_code=500, message=str(e))
|
|
|
|
|
|
async def async_completion(
|
|
llm_model,
|
|
mode: str,
|
|
prompt: str,
|
|
model: str,
|
|
model_response: ModelResponse,
|
|
logging_obj=None,
|
|
request_str=None,
|
|
encoding=None,
|
|
messages=None,
|
|
print_verbose=None,
|
|
client_options=None,
|
|
instances=None,
|
|
vertex_project=None,
|
|
vertex_location=None,
|
|
**optional_params,
|
|
):
|
|
"""
|
|
Add support for acompletion calls for gemini-pro
|
|
"""
|
|
try:
|
|
if mode == "vision":
|
|
print_verbose("\nMaking VertexAI Gemini Pro Vision Call")
|
|
print_verbose(f"\nProcessing input messages = {messages}")
|
|
tools = optional_params.pop("tools", None)
|
|
|
|
prompt, images = _gemini_vision_convert_messages(messages=messages)
|
|
content = [prompt] + images
|
|
|
|
request_str += f"response = llm_model.generate_content({content})\n"
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
|
|
## LLM Call
|
|
response = await llm_model._generate_content_async(
|
|
contents=content,
|
|
generation_config=optional_params,
|
|
tools=tools,
|
|
)
|
|
|
|
if tools is not None and bool(
|
|
getattr(response.candidates[0].content.parts[0], "function_call", None)
|
|
):
|
|
function_call = response.candidates[0].content.parts[0].function_call
|
|
args_dict = {}
|
|
for k, v in function_call.args.items():
|
|
args_dict[k] = v
|
|
args_str = json.dumps(args_dict)
|
|
message = litellm.Message(
|
|
content=None,
|
|
tool_calls=[
|
|
{
|
|
"id": f"call_{str(uuid.uuid4())}",
|
|
"function": {
|
|
"arguments": args_str,
|
|
"name": function_call.name,
|
|
},
|
|
"type": "function",
|
|
}
|
|
],
|
|
)
|
|
completion_response = message
|
|
else:
|
|
completion_response = response.text
|
|
response_obj = response._raw_response
|
|
optional_params["tools"] = tools
|
|
elif mode == "chat":
|
|
# chat-bison etc.
|
|
chat = llm_model.start_chat()
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
response_obj = await chat.send_message_async(prompt, **optional_params)
|
|
completion_response = response_obj.text
|
|
elif mode == "text":
|
|
# gecko etc.
|
|
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
response_obj = await llm_model.predict_async(prompt, **optional_params)
|
|
completion_response = response_obj.text
|
|
elif mode == "custom":
|
|
"""
|
|
Vertex AI Model Garden
|
|
"""
|
|
from google.cloud import aiplatform # type: ignore
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
|
|
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
|
|
client_options=client_options
|
|
)
|
|
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
|
|
endpoint_path = llm_model.endpoint_path(
|
|
project=vertex_project, location=vertex_location, endpoint=model
|
|
)
|
|
request_str += (
|
|
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
|
|
)
|
|
response_obj = await llm_model.predict(
|
|
endpoint=endpoint_path,
|
|
instances=instances,
|
|
)
|
|
response = response_obj.predictions
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
|
|
elif mode == "private":
|
|
request_str += f"llm_model.predict_async(instances={instances})\n"
|
|
response_obj = await llm_model.predict_async(
|
|
instances=instances,
|
|
)
|
|
|
|
response = response_obj.predictions
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt, api_key=None, original_response=completion_response
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
if isinstance(completion_response, litellm.Message):
|
|
model_response["choices"][0]["message"] = completion_response
|
|
elif len(str(completion_response)) > 0:
|
|
model_response["choices"][0]["message"]["content"] = str(
|
|
completion_response
|
|
)
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = model
|
|
## CALCULATING USAGE
|
|
if model in litellm.vertex_language_models and response_obj is not None:
|
|
model_response["choices"][0].finish_reason = map_finish_reason(
|
|
response_obj.candidates[0].finish_reason.name
|
|
)
|
|
usage = Usage(
|
|
prompt_tokens=response_obj.usage_metadata.prompt_token_count,
|
|
completion_tokens=response_obj.usage_metadata.candidates_token_count,
|
|
total_tokens=response_obj.usage_metadata.total_token_count,
|
|
)
|
|
else:
|
|
# init prompt tokens
|
|
# this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
|
|
prompt_tokens, completion_tokens, total_tokens = 0, 0, 0
|
|
if response_obj is not None and (
|
|
hasattr(response_obj, "usage_metadata")
|
|
and hasattr(response_obj.usage_metadata, "prompt_token_count")
|
|
):
|
|
prompt_tokens = response_obj.usage_metadata.prompt_token_count
|
|
completion_tokens = response_obj.usage_metadata.candidates_token_count
|
|
else:
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(
|
|
model_response["choices"][0]["message"].get("content", "")
|
|
)
|
|
)
|
|
|
|
# set usage
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
model_response.usage = usage
|
|
return model_response
|
|
except Exception as e:
|
|
raise VertexAIError(status_code=500, message=str(e))
|
|
|
|
|
|
async def async_streaming(
|
|
llm_model,
|
|
mode: str,
|
|
prompt: str,
|
|
model: str,
|
|
model_response: ModelResponse,
|
|
logging_obj=None,
|
|
request_str=None,
|
|
encoding=None,
|
|
messages=None,
|
|
print_verbose=None,
|
|
client_options=None,
|
|
instances=None,
|
|
vertex_project=None,
|
|
vertex_location=None,
|
|
**optional_params,
|
|
):
|
|
"""
|
|
Add support for async streaming calls for gemini-pro
|
|
"""
|
|
if mode == "vision":
|
|
stream = optional_params.pop("stream")
|
|
tools = optional_params.pop("tools", None)
|
|
print_verbose("\nMaking VertexAI Gemini Pro Vision Call")
|
|
print_verbose(f"\nProcessing input messages = {messages}")
|
|
|
|
prompt, images = _gemini_vision_convert_messages(messages=messages)
|
|
content = [prompt] + images
|
|
request_str += f"response = llm_model.generate_content({content}, generation_config=GenerationConfig(**{optional_params}), stream={stream})\n"
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
|
|
response = await llm_model._generate_content_streaming_async(
|
|
contents=content,
|
|
generation_config=optional_params,
|
|
tools=tools,
|
|
)
|
|
|
|
elif mode == "chat":
|
|
chat = llm_model.start_chat()
|
|
optional_params.pop(
|
|
"stream", None
|
|
) # vertex ai raises an error when passing stream in optional params
|
|
request_str += (
|
|
f"chat.send_message_streaming_async({prompt}, **{optional_params})\n"
|
|
)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
response = chat.send_message_streaming_async(prompt, **optional_params)
|
|
|
|
elif mode == "text":
|
|
optional_params.pop(
|
|
"stream", None
|
|
) # See note above on handling streaming for vertex ai
|
|
request_str += (
|
|
f"llm_model.predict_streaming_async({prompt}, **{optional_params})\n"
|
|
)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
response = llm_model.predict_streaming_async(prompt, **optional_params)
|
|
elif mode == "custom":
|
|
from google.cloud import aiplatform # type: ignore
|
|
|
|
stream = optional_params.pop("stream", None)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
|
|
client_options=client_options
|
|
)
|
|
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
|
|
endpoint_path = llm_model.endpoint_path(
|
|
project=vertex_project, location=vertex_location, endpoint=model
|
|
)
|
|
request_str += (
|
|
f"client.predict(endpoint={endpoint_path}, instances={instances})\n"
|
|
)
|
|
response_obj = await llm_model.predict(
|
|
endpoint=endpoint_path,
|
|
instances=instances,
|
|
)
|
|
|
|
response = response_obj.predictions
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
if stream:
|
|
response = TextStreamer(completion_response)
|
|
|
|
elif mode == "private":
|
|
stream = optional_params.pop("stream", None)
|
|
_ = instances[0].pop("stream", None)
|
|
request_str += f"llm_model.predict_async(instances={instances})\n"
|
|
response_obj = await llm_model.predict_async(
|
|
instances=instances,
|
|
)
|
|
response = response_obj.predictions
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
if stream:
|
|
response = TextStreamer(completion_response)
|
|
|
|
logging_obj.post_call(input=prompt, api_key=None, original_response=response)
|
|
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=response,
|
|
model=model,
|
|
custom_llm_provider="vertex_ai",
|
|
logging_obj=logging_obj,
|
|
)
|
|
|
|
return streamwrapper
|
|
|
|
|
|
def embedding(
|
|
model: str,
|
|
input: Union[list, str],
|
|
api_key: Optional[str] = None,
|
|
logging_obj=None,
|
|
model_response=None,
|
|
optional_params=None,
|
|
encoding=None,
|
|
vertex_project=None,
|
|
vertex_location=None,
|
|
vertex_credentials=None,
|
|
aembedding=False,
|
|
print_verbose=None,
|
|
):
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
try:
|
|
import vertexai
|
|
except:
|
|
raise VertexAIError(
|
|
status_code=400,
|
|
message="vertexai import failed please run `pip install google-cloud-aiplatform`",
|
|
)
|
|
|
|
from vertexai.language_models import TextEmbeddingModel
|
|
import google.auth # type: ignore
|
|
|
|
## Load credentials with the correct quota project ref: https://github.com/googleapis/python-aiplatform/issues/2557#issuecomment-1709284744
|
|
try:
|
|
print_verbose(
|
|
f"VERTEX AI: vertex_project={vertex_project}; vertex_location={vertex_location}"
|
|
)
|
|
if vertex_credentials is not None and isinstance(vertex_credentials, str):
|
|
import google.oauth2.service_account
|
|
|
|
json_obj = json.loads(vertex_credentials)
|
|
|
|
creds = google.oauth2.service_account.Credentials.from_service_account_info(
|
|
json_obj,
|
|
scopes=["https://www.googleapis.com/auth/cloud-platform"],
|
|
)
|
|
else:
|
|
creds, _ = google.auth.default(quota_project_id=vertex_project)
|
|
print_verbose(
|
|
f"VERTEX AI: creds={creds}; google application credentials: {os.getenv('GOOGLE_APPLICATION_CREDENTIALS')}"
|
|
)
|
|
vertexai.init(
|
|
project=vertex_project, location=vertex_location, credentials=creds
|
|
)
|
|
except Exception as e:
|
|
raise VertexAIError(status_code=401, message=str(e))
|
|
|
|
if isinstance(input, str):
|
|
input = [input]
|
|
|
|
try:
|
|
llm_model = TextEmbeddingModel.from_pretrained(model)
|
|
except Exception as e:
|
|
raise VertexAIError(status_code=422, message=str(e))
|
|
|
|
if aembedding == True:
|
|
return async_embedding(
|
|
model=model,
|
|
client=llm_model,
|
|
input=input,
|
|
logging_obj=logging_obj,
|
|
model_response=model_response,
|
|
optional_params=optional_params,
|
|
encoding=encoding,
|
|
)
|
|
|
|
request_str = f"""embeddings = llm_model.get_embeddings({input})"""
|
|
## LOGGING PRE-CALL
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
|
|
try:
|
|
embeddings = llm_model.get_embeddings(input)
|
|
except Exception as e:
|
|
raise VertexAIError(status_code=500, message=str(e))
|
|
|
|
## LOGGING POST-CALL
|
|
logging_obj.post_call(input=input, api_key=None, original_response=embeddings)
|
|
## Populate OpenAI compliant dictionary
|
|
embedding_response = []
|
|
for idx, embedding in enumerate(embeddings):
|
|
embedding_response.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding.values,
|
|
}
|
|
)
|
|
model_response["object"] = "list"
|
|
model_response["data"] = embedding_response
|
|
model_response["model"] = model
|
|
input_tokens = 0
|
|
|
|
input_str = "".join(input)
|
|
|
|
input_tokens += len(encoding.encode(input_str))
|
|
|
|
usage = Usage(
|
|
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
|
|
)
|
|
model_response.usage = usage
|
|
|
|
return model_response
|
|
|
|
|
|
async def async_embedding(
|
|
model: str,
|
|
input: Union[list, str],
|
|
logging_obj=None,
|
|
model_response=None,
|
|
optional_params=None,
|
|
encoding=None,
|
|
client=None,
|
|
):
|
|
"""
|
|
Async embedding implementation
|
|
"""
|
|
request_str = f"""embeddings = llm_model.get_embeddings({input})"""
|
|
## LOGGING PRE-CALL
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
|
|
try:
|
|
embeddings = await client.get_embeddings_async(input)
|
|
except Exception as e:
|
|
raise VertexAIError(status_code=500, message=str(e))
|
|
|
|
## LOGGING POST-CALL
|
|
logging_obj.post_call(input=input, api_key=None, original_response=embeddings)
|
|
## Populate OpenAI compliant dictionary
|
|
embedding_response = []
|
|
for idx, embedding in enumerate(embeddings):
|
|
embedding_response.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding.values,
|
|
}
|
|
)
|
|
model_response["object"] = "list"
|
|
model_response["data"] = embedding_response
|
|
model_response["model"] = model
|
|
input_tokens = 0
|
|
|
|
input_str = "".join(input)
|
|
|
|
input_tokens += len(encoding.encode(input_str))
|
|
|
|
usage = Usage(
|
|
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
|
|
)
|
|
model_response.usage = usage
|
|
|
|
return model_response
|