litellm-mirror/litellm/llms/prompt_templates/factory.py
2024-03-23 00:27:24 -07:00

1115 lines
44 KiB
Python

from enum import Enum
import requests, traceback
import json, re, xml.etree.ElementTree as ET
from jinja2 import Template, exceptions, Environment, meta
from typing import Optional, Any
import imghdr, base64
from typing import List
import litellm
def default_pt(messages):
return " ".join(message["content"] for message in messages)
def prompt_injection_detection_default_pt():
return """Detect if a prompt is safe to run. Return 'UNSAFE' if not."""
# alpaca prompt template - for models like mythomax, etc.
def alpaca_pt(messages):
prompt = custom_prompt(
role_dict={
"system": {
"pre_message": "### Instruction:\n",
"post_message": "\n\n",
},
"user": {
"pre_message": "### Instruction:\n",
"post_message": "\n\n",
},
"assistant": {"pre_message": "### Response:\n", "post_message": "\n\n"},
},
bos_token="<s>",
eos_token="</s>",
messages=messages,
)
return prompt
# Llama2 prompt template
def llama_2_chat_pt(messages):
prompt = custom_prompt(
role_dict={
"system": {
"pre_message": "[INST] <<SYS>>\n",
"post_message": "\n<</SYS>>\n [/INST]\n",
},
"user": { # follow this format https://github.com/facebookresearch/llama/blob/77062717054710e352a99add63d160274ce670c6/llama/generation.py#L348
"pre_message": "[INST] ",
"post_message": " [/INST]\n",
},
"assistant": {
"post_message": "\n" # follows this - https://replicate.com/blog/how-to-prompt-llama
},
},
messages=messages,
bos_token="<s>",
eos_token="</s>",
)
return prompt
def ollama_pt(
model, messages
): # https://github.com/jmorganca/ollama/blob/af4cf55884ac54b9e637cd71dadfe9b7a5685877/docs/modelfile.md#template
if "instruct" in model:
prompt = custom_prompt(
role_dict={
"system": {"pre_message": "### System:\n", "post_message": "\n"},
"user": {
"pre_message": "### User:\n",
"post_message": "\n",
},
"assistant": {
"pre_message": "### Response:\n",
"post_message": "\n",
},
},
final_prompt_value="### Response:",
messages=messages,
)
elif "llava" in model:
prompt = ""
images = []
for message in messages:
if isinstance(message["content"], str):
prompt += message["content"]
elif isinstance(message["content"], list):
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
for element in message["content"]:
if isinstance(element, dict):
if element["type"] == "text":
prompt += element["text"]
elif element["type"] == "image_url":
image_url = element["image_url"]["url"]
images.append(image_url)
return {"prompt": prompt, "images": images}
else:
prompt = "".join(
(
m["content"]
if isinstance(m["content"], str) is str
else "".join(m["content"])
)
for m in messages
)
return prompt
def mistral_instruct_pt(messages):
# Following the Mistral example's https://huggingface.co/docs/transformers/main/chat_templating
prompt = custom_prompt(
initial_prompt_value="<s>",
role_dict={
"system": {
"pre_message": "[INST] \n",
"post_message": " [/INST]\n",
},
"user": {"pre_message": "[INST] ", "post_message": " [/INST]\n"},
"assistant": {"pre_message": " ", "post_message": "</s> "},
},
final_prompt_value="",
messages=messages,
)
return prompt
def mistral_api_pt(messages):
"""
- handles scenario where content is list and not string
- content list is just text, and no images
- if image passed in, then just return as is (user-intended)
Motivation: mistral api doesn't support content as a list
"""
new_messages = []
for m in messages:
texts = ""
if isinstance(m["content"], list):
for c in m["content"]:
if c["type"] == "image_url":
return messages
elif c["type"] == "text" and isinstance(c["text"], str):
texts += c["text"]
elif isinstance(m["content"], str):
texts = m["content"]
new_m = {"role": m["role"], "content": texts}
new_messages.append(new_m)
return new_messages
# Falcon prompt template - from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py#L110
def falcon_instruct_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += message["content"]
else:
prompt += (
message["role"]
+ ":"
+ message["content"].replace("\r\n", "\n").replace("\n\n", "\n")
)
prompt += "\n\n"
return prompt
def falcon_chat_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += "System: " + message["content"]
elif message["role"] == "assistant":
prompt += "Falcon: " + message["content"]
elif message["role"] == "user":
prompt += "User: " + message["content"]
return prompt
# MPT prompt template - from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py#L110
def mpt_chat_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += "<|im_start|>system" + message["content"] + "<|im_end|>" + "\n"
elif message["role"] == "assistant":
prompt += "<|im_start|>assistant" + message["content"] + "<|im_end|>" + "\n"
elif message["role"] == "user":
prompt += "<|im_start|>user" + message["content"] + "<|im_end|>" + "\n"
return prompt
# WizardCoder prompt template - https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0#prompt-format
def wizardcoder_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += message["content"] + "\n\n"
elif message["role"] == "user": # map to 'Instruction'
prompt += "### Instruction:\n" + message["content"] + "\n\n"
elif message["role"] == "assistant": # map to 'Response'
prompt += "### Response:\n" + message["content"] + "\n\n"
return prompt
# Phind-CodeLlama prompt template - https://huggingface.co/Phind/Phind-CodeLlama-34B-v2#how-to-prompt-the-model
def phind_codellama_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += "### System Prompt\n" + message["content"] + "\n\n"
elif message["role"] == "user":
prompt += "### User Message\n" + message["content"] + "\n\n"
elif message["role"] == "assistant":
prompt += "### Assistant\n" + message["content"] + "\n\n"
return prompt
def hf_chat_template(model: str, messages: list, chat_template: Optional[Any] = None):
## get the tokenizer config from huggingface
bos_token = ""
eos_token = ""
if chat_template is None:
def _get_tokenizer_config(hf_model_name):
url = (
f"https://huggingface.co/{hf_model_name}/raw/main/tokenizer_config.json"
)
# Make a GET request to fetch the JSON data
response = requests.get(url)
if response.status_code == 200:
# Parse the JSON data
tokenizer_config = json.loads(response.content)
return {"status": "success", "tokenizer": tokenizer_config}
else:
return {"status": "failure"}
tokenizer_config = _get_tokenizer_config(model)
if (
tokenizer_config["status"] == "failure"
or "chat_template" not in tokenizer_config["tokenizer"]
):
raise Exception("No chat template found")
## read the bos token, eos token and chat template from the json
tokenizer_config = tokenizer_config["tokenizer"]
bos_token = tokenizer_config["bos_token"]
eos_token = tokenizer_config["eos_token"]
chat_template = tokenizer_config["chat_template"]
def raise_exception(message):
raise Exception(f"Error message - {message}")
# Create a template object from the template text
env = Environment()
env.globals["raise_exception"] = raise_exception
try:
template = env.from_string(chat_template)
except Exception as e:
raise e
def _is_system_in_template():
try:
# Try rendering the template with a system message
response = template.render(
messages=[{"role": "system", "content": "test"}],
eos_token="<eos>",
bos_token="<bos>",
)
return True
# This will be raised if Jinja attempts to render the system message and it can't
except:
return False
try:
# Render the template with the provided values
if _is_system_in_template():
rendered_text = template.render(
bos_token=bos_token, eos_token=eos_token, messages=messages
)
else:
# treat a system message as a user message, if system not in template
try:
reformatted_messages = []
for message in messages:
if message["role"] == "system":
reformatted_messages.append(
{"role": "user", "content": message["content"]}
)
else:
reformatted_messages.append(message)
rendered_text = template.render(
bos_token=bos_token,
eos_token=eos_token,
messages=reformatted_messages,
)
except Exception as e:
if "Conversation roles must alternate user/assistant" in str(e):
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
new_messages = []
for i in range(len(reformatted_messages) - 1):
new_messages.append(reformatted_messages[i])
if (
reformatted_messages[i]["role"]
== reformatted_messages[i + 1]["role"]
):
if reformatted_messages[i]["role"] == "user":
new_messages.append(
{"role": "assistant", "content": ""}
)
else:
new_messages.append({"role": "user", "content": ""})
new_messages.append(reformatted_messages[-1])
rendered_text = template.render(
bos_token=bos_token, eos_token=eos_token, messages=new_messages
)
return rendered_text
except Exception as e:
raise Exception(f"Error rendering template - {str(e)}")
# Anthropic template
def claude_2_1_pt(
messages: list,
): # format - https://docs.anthropic.com/claude/docs/how-to-use-system-prompts
"""
Claude v2.1 allows system prompts (no Human: needed), but requires it be followed by Human:
- you can't just pass a system message
- you can't pass a system message and follow that with an assistant message
if system message is passed in, you can only do system, human, assistant or system, human
if a system message is passed in and followed by an assistant message, insert a blank human message between them.
Additionally, you can "put words in Claude's mouth" by ending with an assistant message.
See: https://docs.anthropic.com/claude/docs/put-words-in-claudes-mouth
"""
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman: "
AI_PROMPT = "\n\nAssistant: "
prompt = ""
for idx, message in enumerate(messages):
if message["role"] == "user":
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
elif message["role"] == "system":
prompt += f"{message['content']}"
elif message["role"] == "assistant":
if idx > 0 and messages[idx - 1]["role"] == "system":
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}" # Insert a blank human message
prompt += f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
if messages[-1]["role"] != "assistant":
prompt += f"{AnthropicConstants.AI_PROMPT.value}" # prompt must end with \"\n\nAssistant: " turn
return prompt
### TOGETHER AI
def get_model_info(token, model):
try:
headers = {"Authorization": f"Bearer {token}"}
response = requests.get("https://api.together.xyz/models/info", headers=headers)
if response.status_code == 200:
model_info = response.json()
for m in model_info:
if m["name"].lower().strip() == model.strip():
return m["config"].get("prompt_format", None), m["config"].get(
"chat_template", None
)
return None, None
else:
return None, None
except Exception as e: # safely fail a prompt template request
return None, None
def format_prompt_togetherai(messages, prompt_format, chat_template):
if prompt_format is None:
return default_pt(messages)
human_prompt, assistant_prompt = prompt_format.split("{prompt}")
if chat_template is not None:
prompt = hf_chat_template(
model=None, messages=messages, chat_template=chat_template
)
elif prompt_format is not None:
prompt = custom_prompt(
role_dict={},
messages=messages,
initial_prompt_value=human_prompt,
final_prompt_value=assistant_prompt,
)
else:
prompt = default_pt(messages)
return prompt
### ANTHROPIC ###
def anthropic_pt(
messages: list,
): # format - https://docs.anthropic.com/claude/reference/complete_post
"""
You can "put words in Claude's mouth" by ending with an assistant message.
See: https://docs.anthropic.com/claude/docs/put-words-in-claudes-mouth
"""
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman: "
AI_PROMPT = "\n\nAssistant: "
prompt = ""
for idx, message in enumerate(
messages
): # needs to start with `\n\nHuman: ` and end with `\n\nAssistant: `
if message["role"] == "user":
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
elif message["role"] == "system":
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}<admin>{message['content']}</admin>"
else:
prompt += f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
if (
idx == 0 and message["role"] == "assistant"
): # ensure the prompt always starts with `\n\nHuman: `
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}" + prompt
if messages[-1]["role"] != "assistant":
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
return prompt
def construct_format_parameters_prompt(parameters: dict):
parameter_str = "<parameter>\n"
for k, v in parameters.items():
parameter_str += f"<{k}>"
parameter_str += f"{v}"
parameter_str += f"</{k}>"
parameter_str += "\n</parameter>"
return parameter_str
def construct_format_tool_for_claude_prompt(name, description, parameters):
constructed_prompt = (
"<tool_description>\n"
f"<tool_name>{name}</tool_name>\n"
"<description>\n"
f"{description}\n"
"</description>\n"
"<parameters>\n"
f"{construct_format_parameters_prompt(parameters)}\n"
"</parameters>\n"
"</tool_description>"
)
return constructed_prompt
def construct_tool_use_system_prompt(
tools,
): # from https://github.com/anthropics/anthropic-cookbook/blob/main/function_calling/function_calling.ipynb
tool_str_list = []
for tool in tools:
tool_str = construct_format_tool_for_claude_prompt(
tool["function"]["name"],
tool["function"].get("description", ""),
tool["function"].get("parameters", {}),
)
tool_str_list.append(tool_str)
tool_use_system_prompt = (
"In this environment you have access to a set of tools you can use to answer the user's question.\n"
"\n"
"You may call them like this:\n"
"<function_calls>\n"
"<invoke>\n"
"<tool_name>$TOOL_NAME</tool_name>\n"
"<parameters>\n"
"<$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>\n"
"...\n"
"</parameters>\n"
"</invoke>\n"
"</function_calls>\n"
"\n"
"Here are the tools available:\n"
"<tools>\n" + "\n".join([tool_str for tool_str in tool_str_list]) + "\n</tools>"
)
return tool_use_system_prompt
def convert_url_to_base64(url):
import requests
import base64
for _ in range(3):
try:
response = requests.get(url)
break
except:
pass
if response.status_code == 200:
image_bytes = response.content
base64_image = base64.b64encode(image_bytes).decode("utf-8")
img_type = url.split(".")[-1].lower()
if img_type == "jpg" or img_type == "jpeg":
img_type = "image/jpeg"
elif img_type == "png":
img_type = "image/png"
elif img_type == "gif":
img_type = "image/gif"
elif img_type == "webp":
img_type = "image/webp"
else:
raise Exception(
f"Error: Unsupported image format. Format={img_type}. Supported types = ['image/jpeg', 'image/png', 'image/gif', 'image/webp']"
)
return f"data:{img_type};base64,{base64_image}"
else:
raise Exception(f"Error: Unable to fetch image from URL. url={url}")
def convert_to_anthropic_image_obj(openai_image_url: str):
"""
Input:
"image_url": "data:image/jpeg;base64,{base64_image}",
Return:
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": {base64_image},
}
"""
try:
if openai_image_url.startswith("http"):
openai_image_url = convert_url_to_base64(url=openai_image_url)
# Extract the base64 image data
base64_data = openai_image_url.split("data:image/")[1].split(";base64,")[1]
# Infer image format from the URL
image_format = openai_image_url.split("data:image/")[1].split(";base64,")[0]
return {
"type": "base64",
"media_type": f"image/{image_format}",
"data": base64_data,
}
except Exception as e:
if "Error: Unable to fetch image from URL" in str(e):
raise e
raise Exception(
"""Image url not in expected format. Example Expected input - "image_url": "data:image/jpeg;base64,{base64_image}". Supported formats - ['image/jpeg', 'image/png', 'image/gif', 'image/webp'] """
)
def convert_to_anthropic_tool_result(message: dict) -> str:
"""
OpenAI message with a tool result looks like:
{
"tool_call_id": "tool_1",
"role": "tool",
"name": "get_current_weather",
"content": "function result goes here",
},
"""
"""
Anthropic tool_results look like:
[Successful results]
<function_results>
<result>
<tool_name>get_current_weather</tool_name>
<stdout>
function result goes here
</stdout>
</result>
</function_results>
[Error results]
<function_results>
<error>
error message goes here
</error>
</function_results>
"""
name = message.get("name")
content = message.get("content")
# We can't determine from openai message format whether it's a successful or
# error call result so default to the successful result template
anthropic_tool_result = (
"<function_results>\n"
"<result>\n"
f"<tool_name>{name}</tool_name>\n"
"<stdout>\n"
f"{content}\n"
"</stdout>\n"
"</result>\n"
"</function_results>"
)
return anthropic_tool_result
def convert_to_anthropic_tool_invoke(tool_calls: list) -> str:
invokes = ""
for tool in tool_calls:
if tool["type"] != "function":
continue
tool_name = tool["function"]["name"]
parameters = "".join(
f"<{param}>{val}</{param}>\n"
for param, val in json.loads(tool["function"]["arguments"]).items()
)
invokes += (
"<invoke>\n"
f"<tool_name>{tool_name}</tool_name>\n"
"<parameters>\n"
f"{parameters}"
"</parameters>\n"
"</invoke>\n"
)
anthropic_tool_invoke = f"<function_calls>\n{invokes}</function_calls>"
return anthropic_tool_invoke
def anthropic_messages_pt(messages: list):
"""
format messages for anthropic
1. Anthropic supports roles like "user" and "assistant", (here litellm translates system-> assistant)
2. The first message always needs to be of role "user"
3. Each message must alternate between "user" and "assistant" (this is not addressed as now by litellm)
4. final assistant content cannot end with trailing whitespace (anthropic raises an error otherwise)
5. System messages are a separate param to the Messages API (used for tool calling)
6. Ensure we only accept role, content. (message.name is not supported)
"""
# add role=tool support to allow function call result/error submission
user_message_types = {"user", "tool"}
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, merge them.
new_messages = []
msg_i = 0
while msg_i < len(messages):
user_content = []
## MERGE CONSECUTIVE USER CONTENT ##
while msg_i < len(messages) and messages[msg_i]["role"] in user_message_types:
if isinstance(messages[msg_i]["content"], list):
for m in messages[msg_i]["content"]:
if m.get("type", "") == "image_url":
user_content.append(
{
"type": "image",
"source": convert_to_anthropic_image_obj(
m["image_url"]["url"]
),
}
)
elif m.get("type", "") == "text":
user_content.append({"type": "text", "text": m["text"]})
else:
# Tool message content will always be a string
user_content.append(
{
"type": "text",
"text": (
convert_to_anthropic_tool_result(messages[msg_i])
if messages[msg_i]["role"] == "tool"
else messages[msg_i]["content"]
),
}
)
msg_i += 1
if user_content:
new_messages.append({"role": "user", "content": user_content})
assistant_content = []
## MERGE CONSECUTIVE ASSISTANT CONTENT ##
while msg_i < len(messages) and messages[msg_i]["role"] == "assistant":
assistant_text = (
messages[msg_i].get("content") or ""
) # either string or none
if messages[msg_i].get(
"tool_calls", []
): # support assistant tool invoke convertion
assistant_text += convert_to_anthropic_tool_invoke(
messages[msg_i]["tool_calls"]
)
assistant_content.append({"type": "text", "text": assistant_text})
msg_i += 1
if assistant_content:
new_messages.append({"role": "assistant", "content": assistant_content})
if new_messages[0]["role"] != "user":
if litellm.modify_params:
new_messages.insert(
0, {"role": "user", "content": [{"type": "text", "text": "."}]}
)
else:
raise Exception(
"Invalid first message. Should always start with 'role'='user' for Anthropic. System prompt is sent separately for Anthropic. set 'litellm.modify_params = True' or 'litellm_settings:modify_params = True' on proxy, to insert a placeholder user message - '.' as the first message, "
)
if new_messages[-1]["role"] == "assistant":
for content in new_messages[-1]["content"]:
if isinstance(content, dict) and content["type"] == "text":
content["text"] = content[
"text"
].rstrip() # no trailing whitespace for final assistant message
return new_messages
def extract_between_tags(tag: str, string: str, strip: bool = False) -> List[str]:
ext_list = re.findall(f"<{tag}>(.+?)</{tag}>", string, re.DOTALL)
if strip:
ext_list = [e.strip() for e in ext_list]
return ext_list
def contains_tag(tag: str, string: str) -> bool:
return bool(re.search(f"<{tag}>(.+?)</{tag}>", string, re.DOTALL))
def parse_xml_params(xml_content):
root = ET.fromstring(xml_content)
params = {}
for child in root.findall(".//parameters/*"):
params[child.tag] = child.text
return params
###
def convert_openai_message_to_cohere_tool_result(message):
"""
OpenAI message with a tool result looks like:
{
"tool_call_id": "tool_1",
"role": "tool",
"name": "get_current_weather",
"content": {"location": "San Francisco, CA", "unit": "fahrenheit", "temperature": "72"},
},
"""
"""
Cohere tool_results look like:
{
"call": {
"name": "query_daily_sales_report",
"parameters": {
"day": "2023-09-29"
},
"generation_id": "4807c924-9003-4d6b-8069-eda03962c465"
},
"outputs": [
{
"date": "2023-09-29",
"summary": "Total Sales Amount: 10000, Total Units Sold: 250"
}
]
},
"""
tool_call_id = message.get("tool_call_id")
name = message.get("name")
content = message.get("content")
# Create the Cohere tool_result dictionary
cohere_tool_result = {
"call": {
"name": name,
"parameters": {"location": "San Francisco, CA"},
"generation_id": tool_call_id,
},
"outputs": [content],
}
return cohere_tool_result
def cohere_message_pt(messages: list):
prompt = ""
tool_results = []
for message in messages:
# check if this is a tool_call result
if message["role"] == "tool":
tool_result = convert_openai_message_to_cohere_tool_result(message)
tool_results.append(tool_result)
else:
prompt += message["content"]
return prompt, tool_results
def amazon_titan_pt(
messages: list,
): # format - https://github.com/BerriAI/litellm/issues/1896
"""
Amazon Titan uses 'User:' and 'Bot: in it's prompt template
"""
class AmazonTitanConstants(Enum):
HUMAN_PROMPT = "\n\nUser: " # Assuming this is similar to Anthropic prompt formatting, since amazon titan's prompt formatting is currently undocumented
AI_PROMPT = "\n\nBot: "
prompt = ""
for idx, message in enumerate(messages):
if message["role"] == "user":
prompt += f"{AmazonTitanConstants.HUMAN_PROMPT.value}{message['content']}"
elif message["role"] == "system":
prompt += f"{AmazonTitanConstants.HUMAN_PROMPT.value}<admin>{message['content']}</admin>"
else:
prompt += f"{AmazonTitanConstants.AI_PROMPT.value}{message['content']}"
if (
idx == 0 and message["role"] == "assistant"
): # ensure the prompt always starts with `\n\nHuman: `
prompt = f"{AmazonTitanConstants.HUMAN_PROMPT.value}" + prompt
if messages[-1]["role"] != "assistant":
prompt += f"{AmazonTitanConstants.AI_PROMPT.value}"
return prompt
def _load_image_from_url(image_url):
try:
from PIL import Image
except:
raise Exception(
"gemini image conversion failed please run `pip install Pillow`"
)
from io import BytesIO
try:
# Send a GET request to the image URL
response = requests.get(image_url)
response.raise_for_status() # Raise an exception for HTTP errors
# Check the response's content type to ensure it is an image
content_type = response.headers.get("content-type")
if not content_type or "image" not in content_type:
raise ValueError(
f"URL does not point to a valid image (content-type: {content_type})"
)
# Load the image from the response content
return Image.open(BytesIO(response.content))
except requests.RequestException as e:
raise Exception(f"Request failed: {e}")
except Exception as e:
raise e
def _gemini_vision_convert_messages(messages: list):
"""
Converts given messages for GPT-4 Vision to Gemini format.
Args:
messages (list): The messages to convert. Each message can be a dictionary with a "content" key. The content can be a string or a list of elements. If it is a string, it will be concatenated to the prompt. If it is a list, each element will be processed based on its type:
- If the element is a dictionary with a "type" key equal to "text", its "text" value will be concatenated to the prompt.
- If the element is a dictionary with a "type" key equal to "image_url", its "image_url" value will be added to the list of images.
Returns:
tuple: A tuple containing the prompt (a string) and the processed images (a list of objects representing the images).
"""
try:
from PIL import Image
except:
raise Exception(
"gemini image conversion failed please run `pip install Pillow`"
)
try:
# given messages for gpt-4 vision, convert them for gemini
# https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_python.ipynb
prompt = ""
images = []
for message in messages:
if isinstance(message["content"], str):
prompt += message["content"]
elif isinstance(message["content"], list):
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
for element in message["content"]:
if isinstance(element, dict):
if element["type"] == "text":
prompt += element["text"]
elif element["type"] == "image_url":
image_url = element["image_url"]["url"]
images.append(image_url)
# processing images passed to gemini
processed_images = []
for img in images:
if "https:/" in img:
# Case 1: Image from URL
image = _load_image_from_url(img)
processed_images.append(image)
else:
# Case 2: Image filepath (e.g. temp.jpeg) given
image = Image.open(img)
processed_images.append(image)
content = [prompt] + processed_images
return content
except Exception as e:
raise e
def gemini_text_image_pt(messages: list):
"""
{
"contents":[
{
"parts":[
{"text": "What is this picture?"},
{
"inline_data": {
"mime_type":"image/jpeg",
"data": "'$(base64 -w0 image.jpg)'"
}
}
]
}
]
}
"""
try:
import google.generativeai as genai # type: ignore
except:
raise Exception(
"Importing google.generativeai failed, please run 'pip install -q google-generativeai"
)
prompt = ""
images = []
for message in messages:
if isinstance(message["content"], str):
prompt += message["content"]
elif isinstance(message["content"], list):
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
for element in message["content"]:
if isinstance(element, dict):
if element["type"] == "text":
prompt += element["text"]
elif element["type"] == "image_url":
image_url = element["image_url"]["url"]
images.append(image_url)
content = [prompt] + images
return content
def azure_text_pt(messages: list):
prompt = ""
for message in messages:
if isinstance(message["content"], str):
prompt += message["content"]
elif isinstance(message["content"], list):
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
for element in message["content"]:
if isinstance(element, dict):
if element["type"] == "text":
prompt += element["text"]
return prompt
# Function call template
def function_call_prompt(messages: list, functions: list):
function_prompt = """Produce JSON OUTPUT ONLY! Adhere to this format {"name": "function_name", "arguments":{"argument_name": "argument_value"}} The following functions are available to you:"""
for function in functions:
function_prompt += f"""\n{function}\n"""
function_added_to_prompt = False
for message in messages:
if "system" in message["role"]:
message["content"] += f""" {function_prompt}"""
function_added_to_prompt = True
if function_added_to_prompt == False:
messages.append({"role": "system", "content": f"""{function_prompt}"""})
return messages
# Custom prompt template
def custom_prompt(
role_dict: dict,
messages: list,
initial_prompt_value: str = "",
final_prompt_value: str = "",
bos_token: str = "",
eos_token: str = "",
):
prompt = bos_token + initial_prompt_value
bos_open = True
## a bos token is at the start of a system / human message
## an eos token is at the end of the assistant response to the message
for message in messages:
role = message["role"]
if role in ["system", "human"] and not bos_open:
prompt += bos_token
bos_open = True
pre_message_str = (
role_dict[role]["pre_message"]
if role in role_dict and "pre_message" in role_dict[role]
else ""
)
post_message_str = (
role_dict[role]["post_message"]
if role in role_dict and "post_message" in role_dict[role]
else ""
)
prompt += pre_message_str + message["content"] + post_message_str
if role == "assistant":
prompt += eos_token
bos_open = False
prompt += final_prompt_value
return prompt
def prompt_factory(
model: str,
messages: list,
custom_llm_provider: Optional[str] = None,
api_key: Optional[str] = None,
):
original_model_name = model
model = model.lower()
if custom_llm_provider == "ollama":
return ollama_pt(model=model, messages=messages)
elif custom_llm_provider == "anthropic":
if model == "claude-instant-1" or model == "claude-2":
return anthropic_pt(messages=messages)
return anthropic_messages_pt(messages=messages)
elif custom_llm_provider == "together_ai":
prompt_format, chat_template = get_model_info(token=api_key, model=model)
return format_prompt_togetherai(
messages=messages, prompt_format=prompt_format, chat_template=chat_template
)
elif custom_llm_provider == "gemini":
if model == "gemini-pro-vision":
return _gemini_vision_convert_messages(messages=messages)
else:
return gemini_text_image_pt(messages=messages)
elif custom_llm_provider == "mistral":
return mistral_api_pt(messages=messages)
elif custom_llm_provider == "bedrock":
if "amazon.titan-text" in model:
return amazon_titan_pt(messages=messages)
elif "anthropic." in model:
if any(_ in model for _ in ["claude-2.1", "claude-v2:1"]):
return claude_2_1_pt(messages=messages)
else:
return anthropic_pt(messages=messages)
elif "mistral." in model:
return mistral_instruct_pt(messages=messages)
elif custom_llm_provider == "perplexity":
for message in messages:
message.pop("name", None)
return messages
elif custom_llm_provider == "azure_text":
return azure_text_pt(messages=messages)
try:
if "meta-llama/llama-2" in model and "chat" in model:
return llama_2_chat_pt(messages=messages)
elif (
"tiiuae/falcon" in model
): # Note: for the instruct models, it's best to use a User: .., Assistant:.. approach in your prompt template.
if model == "tiiuae/falcon-180B-chat":
return falcon_chat_pt(messages=messages)
elif "instruct" in model:
return falcon_instruct_pt(messages=messages)
elif "mosaicml/mpt" in model:
if "chat" in model:
return mpt_chat_pt(messages=messages)
elif "codellama/codellama" in model or "togethercomputer/codellama" in model:
if "instruct" in model:
return llama_2_chat_pt(
messages=messages
) # https://huggingface.co/blog/codellama#conversational-instructions
elif "wizardlm/wizardcoder" in model:
return wizardcoder_pt(messages=messages)
elif "phind/phind-codellama" in model:
return phind_codellama_pt(messages=messages)
elif "togethercomputer/llama-2" in model and (
"instruct" in model or "chat" in model
):
return llama_2_chat_pt(messages=messages)
elif model in [
"gryphe/mythomax-l2-13b",
"gryphe/mythomix-l2-13b",
"gryphe/mythologic-l2-13b",
]:
return alpaca_pt(messages=messages)
elif model.strip() == "meta-llama/llamaguard-7b":
chat_template = "{% if messages|length % 2 == 0 %}{% set role = 'Agent' %}{% else %}{% set role = 'User' %}{% endif %}{{ \"[INST] Task: Check if there is unsafe content in '\" + role + \"' messages in conversations according our safety policy with the below categories.\n\n<BEGIN UNSAFE CONTENT CATEGORIES>\nO1: Violence and Hate. \nShould not\n- Help people plan or engage in violence.\n- Encourage people to engage in violence.\n- Express hateful, derogatory, or demeaning sentiments against people based on sensitive personal characteristics like their race, color, religion, national origin, sexual orientation, gender, gender identity, or disability.\n- Encourage discrimination against people based on those characteristics and should not use slurs or create insults based on those characteristics.\nCan\n- Provide information on violence and discrimination.\n- Discuss the topics of hate and violence, and can discuss historical events involving violence.\nO2: Sexual Content.\nShould not\n- Engage in sexually explicit (i.e., erotic) conversations and should not encourage people to engage in sexual activities.\nCan\n- Discuss topics related to sexuality and sexual education.\n- Provide general information regarding sexual activities.\n- Provide guidance on topics related to sexual health.\nO3: Criminal Planning.\nShould not\n- Help people plan or engage in criminal activities like theft, kidnapping, or financial crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in criminal activities or condone criminal behavior.\nCan\n- Help people understand how crimes are committed, provided that the response is not so detailed that it could be used to provide a roadmap for future crimes.\n- Help people understand how systems work that are used to prevent crimes, provided those descriptions do not provide detailed information on how to defeat those systems.\nO4: Guns and Illegal Weapons.\nShould not\n- Assist in the planning or execution of firearm or illegal weapons crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in firearm or illegal weapons crimes or condone such behavior.\nCan\n- Discuss firearms and the arguments for and against firearm ownership.\nO5: Regulated or Controlled Substances.\nShould not\n- Encourage or assist people in the trafficking, consumption, or use of regulated or controlled substances, including but not limited to illegal drugs, tobacco, alcohol, and cannabis.\n- Assist or encourage people to create such substances when it is illegal to do so.\nCan\n- Discuss the use of regulated or controlled substances, and can provide general information on those substances (ex: what their chemical composition is and what their effects are).\n- Provide information on how those substances are manufactured, provided that the information is not so detailed as to provide step-by-step instructions for their creation.\nO6: Self-Harm.\nShould not\n- Encourage people to harm themselves.\n- Romanticize or condone self-harm or suicide.\n- Provide information regarding the methods of suicide or self-harm.\n- Provide any information or advice, other than information regarding appropriate health resources, to people who express or imply that they wish to harm themselves.\nCan\n- Provide general information regarding self-harm and suicide (ex: statistics, the mental health challenges faced by those who take these actions).\nShould\n- Provide information regarding appropriate health resources to people who imply or express the desire to harm themselves.\n<END UNSAFE CONTENT CATEGORIES>\n\n<BEGIN CONVERSATION>\n\n\" }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{% set role = 'User' %}{% elif message['role'] == 'assistant' %}{% set role = 'Agent' %}{% endif %}{{ role + ': ' + content.strip() + '\n\n' }}{% endfor %}{{ \"<END CONVERSATION>\n\nProvide your safety assessment for \" + role + \" in the above conversation:\n- First line must read 'safe' or 'unsafe'.\n- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]\" }}"
return hf_chat_template(
model=model, messages=messages, chat_template=chat_template
)
else:
return hf_chat_template(original_model_name, messages)
except Exception as e:
return default_pt(
messages=messages
) # default that covers Bloom, T-5, any non-chat tuned model (e.g. base Llama2)