mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
920 lines
31 KiB
Python
920 lines
31 KiB
Python
import os
|
|
import sys
|
|
import traceback
|
|
|
|
import litellm.cost_calculator
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import asyncio
|
|
import os
|
|
import time
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm import (
|
|
TranscriptionResponse,
|
|
completion_cost,
|
|
cost_per_token,
|
|
get_max_tokens,
|
|
model_cost,
|
|
open_ai_chat_completion_models,
|
|
)
|
|
from litellm.litellm_core_utils.litellm_logging import CustomLogger
|
|
|
|
|
|
class CustomLoggingHandler(CustomLogger):
|
|
response_cost: Optional[float] = None
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
self.response_cost = kwargs["response_cost"]
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"kwargs - {kwargs}")
|
|
print(f"kwargs response cost - {kwargs.get('response_cost')}")
|
|
self.response_cost = kwargs["response_cost"]
|
|
|
|
print(f"response_cost: {self.response_cost} ")
|
|
|
|
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
print("Reaches log failure event!")
|
|
self.response_cost = kwargs["response_cost"]
|
|
|
|
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
print("Reaches async log failure event!")
|
|
self.response_cost = kwargs["response_cost"]
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_custom_pricing(sync_mode):
|
|
new_handler = CustomLoggingHandler()
|
|
litellm.callbacks = [new_handler]
|
|
if sync_mode:
|
|
response = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey!"}],
|
|
mock_response="What do you want?",
|
|
input_cost_per_token=0.0,
|
|
output_cost_per_token=0.0,
|
|
)
|
|
time.sleep(5)
|
|
else:
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey!"}],
|
|
mock_response="What do you want?",
|
|
input_cost_per_token=0.0,
|
|
output_cost_per_token=0.0,
|
|
)
|
|
|
|
await asyncio.sleep(5)
|
|
|
|
print(f"new_handler.response_cost: {new_handler.response_cost}")
|
|
assert new_handler.response_cost is not None
|
|
|
|
assert new_handler.response_cost == 0
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sync_mode",
|
|
[True, False],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_failure_completion_cost(sync_mode):
|
|
new_handler = CustomLoggingHandler()
|
|
litellm.callbacks = [new_handler]
|
|
if sync_mode:
|
|
try:
|
|
response = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey!"}],
|
|
mock_response=Exception("this should trigger an error"),
|
|
)
|
|
except Exception:
|
|
pass
|
|
time.sleep(5)
|
|
else:
|
|
try:
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey!"}],
|
|
mock_response=Exception("this should trigger an error"),
|
|
)
|
|
except Exception:
|
|
pass
|
|
await asyncio.sleep(5)
|
|
|
|
print(f"new_handler.response_cost: {new_handler.response_cost}")
|
|
assert new_handler.response_cost is not None
|
|
|
|
assert new_handler.response_cost == 0
|
|
|
|
|
|
def test_custom_pricing_as_completion_cost_param():
|
|
from litellm import Choices, Message, ModelResponse
|
|
from litellm.utils import Usage
|
|
|
|
resp = ModelResponse(
|
|
id="chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac",
|
|
choices=[
|
|
Choices(
|
|
finish_reason=None,
|
|
index=0,
|
|
message=Message(
|
|
content=" Sure! Here is a short poem about the sky:\n\nA canvas of blue, a",
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=1700775391,
|
|
model="ft:gpt-3.5-turbo:my-org:custom_suffix:id",
|
|
object="chat.completion",
|
|
system_fingerprint=None,
|
|
usage=Usage(prompt_tokens=21, completion_tokens=17, total_tokens=38),
|
|
)
|
|
|
|
cost = litellm.completion_cost(
|
|
completion_response=resp,
|
|
custom_cost_per_token={
|
|
"input_cost_per_token": 1000,
|
|
"output_cost_per_token": 20,
|
|
},
|
|
)
|
|
|
|
expected_cost = 1000 * 21 + 17 * 20
|
|
|
|
assert round(cost, 5) == round(expected_cost, 5)
|
|
|
|
|
|
def test_get_gpt3_tokens():
|
|
max_tokens = get_max_tokens("gpt-3.5-turbo")
|
|
print(max_tokens)
|
|
assert max_tokens == 4096
|
|
# print(results)
|
|
|
|
|
|
# test_get_gpt3_tokens()
|
|
|
|
|
|
def test_get_palm_tokens():
|
|
# # 🦄🦄🦄🦄🦄🦄🦄🦄
|
|
max_tokens = get_max_tokens("palm/chat-bison")
|
|
assert max_tokens == 4096
|
|
print(max_tokens)
|
|
|
|
|
|
# test_get_palm_tokens()
|
|
|
|
|
|
def test_zephyr_hf_tokens():
|
|
max_tokens = get_max_tokens("huggingface/HuggingFaceH4/zephyr-7b-beta")
|
|
print(max_tokens)
|
|
assert max_tokens == 32768
|
|
|
|
|
|
# test_zephyr_hf_tokens()
|
|
|
|
|
|
def test_cost_ft_gpt_35():
|
|
try:
|
|
# this tests if litellm.completion_cost can calculate cost for ft:gpt-3.5-turbo:my-org:custom_suffix:id
|
|
# it needs to lookup ft:gpt-3.5-turbo in the litellm model_cost map to get the correct cost
|
|
from litellm import Choices, Message, ModelResponse
|
|
from litellm.utils import Usage
|
|
|
|
resp = ModelResponse(
|
|
id="chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac",
|
|
choices=[
|
|
Choices(
|
|
finish_reason=None,
|
|
index=0,
|
|
message=Message(
|
|
content=" Sure! Here is a short poem about the sky:\n\nA canvas of blue, a",
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=1700775391,
|
|
model="ft:gpt-3.5-turbo:my-org:custom_suffix:id",
|
|
object="chat.completion",
|
|
system_fingerprint=None,
|
|
usage=Usage(prompt_tokens=21, completion_tokens=17, total_tokens=38),
|
|
)
|
|
|
|
cost = litellm.completion_cost(completion_response=resp)
|
|
print("\n Calculated Cost for ft:gpt-3.5", cost)
|
|
input_cost = model_cost["ft:gpt-3.5-turbo"]["input_cost_per_token"]
|
|
output_cost = model_cost["ft:gpt-3.5-turbo"]["output_cost_per_token"]
|
|
print(input_cost, output_cost)
|
|
expected_cost = (input_cost * resp.usage.prompt_tokens) + (
|
|
output_cost * resp.usage.completion_tokens
|
|
)
|
|
print("\n Excpected cost", expected_cost)
|
|
assert cost == expected_cost
|
|
except Exception as e:
|
|
pytest.fail(
|
|
f"Cost Calc failed for ft:gpt-3.5. Expected {expected_cost}, Calculated cost {cost}"
|
|
)
|
|
|
|
|
|
# test_cost_ft_gpt_35()
|
|
|
|
|
|
def test_cost_azure_gpt_35():
|
|
try:
|
|
# this tests if litellm.completion_cost can calculate cost for azure/chatgpt-deployment-2 which maps to azure/gpt-3.5-turbo
|
|
# for this test we check if passing `model` to completion_cost overrides the completion cost
|
|
from litellm import Choices, Message, ModelResponse
|
|
from litellm.utils import Usage
|
|
|
|
resp = ModelResponse(
|
|
id="chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac",
|
|
choices=[
|
|
Choices(
|
|
finish_reason=None,
|
|
index=0,
|
|
message=Message(
|
|
content=" Sure! Here is a short poem about the sky:\n\nA canvas of blue, a",
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
model="gpt-35-turbo", # azure always has model written like this
|
|
usage=Usage(prompt_tokens=21, completion_tokens=17, total_tokens=38),
|
|
)
|
|
|
|
cost = litellm.completion_cost(
|
|
completion_response=resp, model="azure/gpt-35-turbo"
|
|
)
|
|
print("\n Calculated Cost for azure/gpt-3.5-turbo", cost)
|
|
input_cost = model_cost["azure/gpt-35-turbo"]["input_cost_per_token"]
|
|
output_cost = model_cost["azure/gpt-35-turbo"]["output_cost_per_token"]
|
|
expected_cost = (input_cost * resp.usage.prompt_tokens) + (
|
|
output_cost * resp.usage.completion_tokens
|
|
)
|
|
print("\n Excpected cost", expected_cost)
|
|
assert cost == expected_cost
|
|
except Exception as e:
|
|
pytest.fail(
|
|
f"Cost Calc failed for azure/gpt-3.5-turbo. Expected {expected_cost}, Calculated cost {cost}"
|
|
)
|
|
|
|
|
|
# test_cost_azure_gpt_35()
|
|
|
|
|
|
def test_cost_azure_embedding():
|
|
try:
|
|
import asyncio
|
|
|
|
litellm.set_verbose = True
|
|
|
|
async def _test():
|
|
response = await litellm.aembedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm", "gm"],
|
|
)
|
|
|
|
print(response)
|
|
|
|
return response
|
|
|
|
response = asyncio.run(_test())
|
|
|
|
cost = litellm.completion_cost(completion_response=response)
|
|
|
|
print("Cost", cost)
|
|
expected_cost = float("7e-07")
|
|
assert cost == expected_cost
|
|
|
|
except Exception as e:
|
|
pytest.fail(
|
|
f"Cost Calc failed for azure/gpt-3.5-turbo. Expected {expected_cost}, Calculated cost {cost}"
|
|
)
|
|
|
|
|
|
# test_cost_azure_embedding()
|
|
|
|
|
|
def test_cost_openai_image_gen():
|
|
cost = litellm.completion_cost(
|
|
model="dall-e-2",
|
|
size="1024-x-1024",
|
|
quality="standard",
|
|
n=1,
|
|
call_type="image_generation",
|
|
)
|
|
assert cost == 0.019922944
|
|
|
|
|
|
def test_cost_bedrock_pricing():
|
|
"""
|
|
- get pricing specific to region for a model
|
|
"""
|
|
from litellm import Choices, Message, ModelResponse
|
|
from litellm.utils import Usage
|
|
|
|
litellm.set_verbose = True
|
|
input_tokens = litellm.token_counter(
|
|
model="bedrock/anthropic.claude-instant-v1",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
print(f"input_tokens: {input_tokens}")
|
|
output_tokens = litellm.token_counter(
|
|
model="bedrock/anthropic.claude-instant-v1",
|
|
text="It's all going well",
|
|
count_response_tokens=True,
|
|
)
|
|
print(f"output_tokens: {output_tokens}")
|
|
resp = ModelResponse(
|
|
id="chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac",
|
|
choices=[
|
|
Choices(
|
|
finish_reason=None,
|
|
index=0,
|
|
message=Message(
|
|
content="It's all going well",
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=1700775391,
|
|
model="anthropic.claude-instant-v1",
|
|
object="chat.completion",
|
|
system_fingerprint=None,
|
|
usage=Usage(
|
|
prompt_tokens=input_tokens,
|
|
completion_tokens=output_tokens,
|
|
total_tokens=input_tokens + output_tokens,
|
|
),
|
|
)
|
|
resp._hidden_params = {
|
|
"custom_llm_provider": "bedrock",
|
|
"region_name": "ap-northeast-1",
|
|
}
|
|
|
|
cost = litellm.completion_cost(
|
|
model="anthropic.claude-instant-v1",
|
|
completion_response=resp,
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
predicted_cost = input_tokens * 0.00000223 + 0.00000755 * output_tokens
|
|
assert cost == predicted_cost
|
|
|
|
|
|
def test_cost_bedrock_pricing_actual_calls():
|
|
litellm.set_verbose = True
|
|
model = "anthropic.claude-instant-v1"
|
|
messages = [{"role": "user", "content": "Hey, how's it going?"}]
|
|
response = litellm.completion(
|
|
model=model, messages=messages, mock_response="hello cool one"
|
|
)
|
|
|
|
print("response", response)
|
|
cost = litellm.completion_cost(
|
|
model="bedrock/anthropic.claude-instant-v1",
|
|
completion_response=response,
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
assert cost > 0
|
|
|
|
|
|
def test_whisper_openai():
|
|
litellm.set_verbose = True
|
|
transcription = TranscriptionResponse(
|
|
text="Four score and seven years ago, our fathers brought forth on this continent a new nation, conceived in liberty and dedicated to the proposition that all men are created equal. Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure."
|
|
)
|
|
transcription._hidden_params = {
|
|
"model": "whisper-1",
|
|
"custom_llm_provider": "openai",
|
|
"optional_params": {},
|
|
"model_id": None,
|
|
}
|
|
_total_time_in_seconds = 3
|
|
|
|
transcription._response_ms = _total_time_in_seconds * 1000
|
|
cost = litellm.completion_cost(model="whisper-1", completion_response=transcription)
|
|
|
|
print(f"cost: {cost}")
|
|
print(f"whisper dict: {litellm.model_cost['whisper-1']}")
|
|
expected_cost = round(
|
|
litellm.model_cost["whisper-1"]["output_cost_per_second"]
|
|
* _total_time_in_seconds,
|
|
5,
|
|
)
|
|
assert cost == expected_cost
|
|
|
|
|
|
def test_whisper_azure():
|
|
litellm.set_verbose = True
|
|
transcription = TranscriptionResponse(
|
|
text="Four score and seven years ago, our fathers brought forth on this continent a new nation, conceived in liberty and dedicated to the proposition that all men are created equal. Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure."
|
|
)
|
|
transcription._hidden_params = {
|
|
"model": "whisper-1",
|
|
"custom_llm_provider": "azure",
|
|
"optional_params": {},
|
|
"model_id": None,
|
|
}
|
|
_total_time_in_seconds = 3
|
|
|
|
transcription._response_ms = _total_time_in_seconds * 1000
|
|
cost = litellm.completion_cost(
|
|
model="azure/azure-whisper", completion_response=transcription
|
|
)
|
|
|
|
print(f"cost: {cost}")
|
|
print(f"whisper dict: {litellm.model_cost['whisper-1']}")
|
|
expected_cost = round(
|
|
litellm.model_cost["whisper-1"]["output_cost_per_second"]
|
|
* _total_time_in_seconds,
|
|
5,
|
|
)
|
|
assert cost == expected_cost
|
|
|
|
|
|
def test_dalle_3_azure_cost_tracking():
|
|
litellm.set_verbose = True
|
|
# model = "azure/dall-e-3-test"
|
|
# response = litellm.image_generation(
|
|
# model=model,
|
|
# prompt="A cute baby sea otter",
|
|
# api_version="2023-12-01-preview",
|
|
# api_base=os.getenv("AZURE_SWEDEN_API_BASE"),
|
|
# api_key=os.getenv("AZURE_SWEDEN_API_KEY"),
|
|
# base_model="dall-e-3",
|
|
# )
|
|
# print(f"response: {response}")
|
|
response = litellm.ImageResponse(
|
|
created=1710265780,
|
|
data=[
|
|
{
|
|
"b64_json": None,
|
|
"revised_prompt": "A close-up image of an adorable baby sea otter. Its fur is thick and fluffy to provide buoyancy and insulation against the cold water. Its eyes are round, curious and full of life. It's lying on its back, floating effortlessly on the calm sea surface under the warm sun. Surrounding the otter are patches of colorful kelp drifting along the gentle waves, giving the scene a touch of vibrancy. The sea otter has its small paws folded on its chest, and it seems to be taking a break from its play.",
|
|
"url": "https://dalleprodsec.blob.core.windows.net/private/images/3e5d00f3-700e-4b75-869d-2de73c3c975d/generated_00.png?se=2024-03-13T17%3A49%3A51Z&sig=R9RJD5oOSe0Vp9Eg7ze%2FZ8QR7ldRyGH6XhMxiau16Jc%3D&ske=2024-03-19T11%3A08%3A03Z&skoid=e52d5ed7-0657-4f62-bc12-7e5dbb260a96&sks=b&skt=2024-03-12T11%3A08%3A03Z&sktid=33e01921-4d64-4f8c-a055-5bdaffd5e33d&skv=2020-10-02&sp=r&spr=https&sr=b&sv=2020-10-02",
|
|
}
|
|
],
|
|
)
|
|
response.usage = {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
|
|
response._hidden_params = {"model": "dall-e-3", "model_id": None}
|
|
print(f"response hidden params: {response._hidden_params}")
|
|
cost = litellm.completion_cost(
|
|
completion_response=response, call_type="image_generation"
|
|
)
|
|
assert cost > 0
|
|
|
|
|
|
def test_replicate_llama3_cost_tracking():
|
|
litellm.set_verbose = True
|
|
model = "replicate/meta/meta-llama-3-8b-instruct"
|
|
litellm.register_model(
|
|
{
|
|
"replicate/meta/meta-llama-3-8b-instruct": {
|
|
"input_cost_per_token": 0.00000005,
|
|
"output_cost_per_token": 0.00000025,
|
|
"litellm_provider": "replicate",
|
|
}
|
|
}
|
|
)
|
|
response = litellm.ModelResponse(
|
|
id="chatcmpl-cad7282f-7f68-41e7-a5ab-9eb33ae301dc",
|
|
choices=[
|
|
litellm.utils.Choices(
|
|
finish_reason="stop",
|
|
index=0,
|
|
message=litellm.utils.Message(
|
|
content="I'm doing well, thanks for asking! I'm here to help you with any questions or tasks you may have. How can I assist you today?",
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=1714401369,
|
|
model="replicate/meta/meta-llama-3-8b-instruct",
|
|
object="chat.completion",
|
|
system_fingerprint=None,
|
|
usage=litellm.utils.Usage(
|
|
prompt_tokens=48, completion_tokens=31, total_tokens=79
|
|
),
|
|
)
|
|
cost = litellm.completion_cost(
|
|
completion_response=response,
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
|
|
print(f"cost: {cost}")
|
|
cost = round(cost, 5)
|
|
expected_cost = round(
|
|
litellm.model_cost["replicate/meta/meta-llama-3-8b-instruct"][
|
|
"input_cost_per_token"
|
|
]
|
|
* 48
|
|
+ litellm.model_cost["replicate/meta/meta-llama-3-8b-instruct"][
|
|
"output_cost_per_token"
|
|
]
|
|
* 31,
|
|
5,
|
|
)
|
|
assert cost == expected_cost
|
|
|
|
|
|
@pytest.mark.parametrize("is_streaming", [True, False]) #
|
|
def test_groq_response_cost_tracking(is_streaming):
|
|
from litellm.utils import (
|
|
CallTypes,
|
|
Choices,
|
|
Delta,
|
|
Message,
|
|
ModelResponse,
|
|
StreamingChoices,
|
|
Usage,
|
|
)
|
|
|
|
response = ModelResponse(
|
|
id="chatcmpl-876cce24-e520-4cf8-8649-562a9be11c02",
|
|
choices=[
|
|
Choices(
|
|
finish_reason="stop",
|
|
index=0,
|
|
message=Message(
|
|
content="Hi! I'm an AI, so I don't have emotions or feelings like humans do, but I'm functioning properly and ready to help with any questions or topics you'd like to discuss! How can I assist you today?",
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=1717519830,
|
|
model="llama3-70b-8192",
|
|
object="chat.completion",
|
|
system_fingerprint="fp_c1a4bcec29",
|
|
usage=Usage(completion_tokens=46, prompt_tokens=17, total_tokens=63),
|
|
)
|
|
response._hidden_params["custom_llm_provider"] = "groq"
|
|
print(response)
|
|
|
|
response_cost = litellm.response_cost_calculator(
|
|
response_object=response,
|
|
model="groq/llama3-70b-8192",
|
|
custom_llm_provider="groq",
|
|
call_type=CallTypes.acompletion.value,
|
|
optional_params={},
|
|
)
|
|
|
|
assert isinstance(response_cost, float)
|
|
assert response_cost > 0.0
|
|
|
|
print(f"response_cost: {response_cost}")
|
|
|
|
|
|
def test_together_ai_qwen_completion_cost():
|
|
input_kwargs = {
|
|
"completion_response": litellm.ModelResponse(
|
|
**{
|
|
"id": "890db0c33c4ef94b-SJC",
|
|
"choices": [
|
|
{
|
|
"finish_reason": "eos",
|
|
"index": 0,
|
|
"message": {
|
|
"content": "I am Qwen, a large language model created by Alibaba Cloud.",
|
|
"role": "assistant",
|
|
},
|
|
}
|
|
],
|
|
"created": 1717900130,
|
|
"model": "together_ai/qwen/Qwen2-72B-Instruct",
|
|
"object": "chat.completion",
|
|
"system_fingerprint": None,
|
|
"usage": {
|
|
"completion_tokens": 15,
|
|
"prompt_tokens": 23,
|
|
"total_tokens": 38,
|
|
},
|
|
}
|
|
),
|
|
"model": "qwen/Qwen2-72B-Instruct",
|
|
"prompt": "",
|
|
"messages": [],
|
|
"completion": "",
|
|
"total_time": 0.0,
|
|
"call_type": "completion",
|
|
"custom_llm_provider": "together_ai",
|
|
"region_name": None,
|
|
"size": None,
|
|
"quality": None,
|
|
"n": None,
|
|
"custom_cost_per_token": None,
|
|
"custom_cost_per_second": None,
|
|
}
|
|
|
|
response = litellm.cost_calculator.get_model_params_and_category(
|
|
model_name="qwen/Qwen2-72B-Instruct"
|
|
)
|
|
|
|
assert response == "together-ai-41.1b-80b"
|
|
|
|
|
|
@pytest.mark.parametrize("above_128k", [False, True])
|
|
@pytest.mark.parametrize("provider", ["gemini"])
|
|
def test_gemini_completion_cost(above_128k, provider):
|
|
"""
|
|
Check if cost correctly calculated for gemini models based on context window
|
|
"""
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
if provider == "gemini":
|
|
model_name = "gemini-1.5-flash-latest"
|
|
else:
|
|
model_name = "gemini-1.5-flash-preview-0514"
|
|
if above_128k:
|
|
prompt_tokens = 128001.0
|
|
output_tokens = 228001.0
|
|
else:
|
|
prompt_tokens = 128.0
|
|
output_tokens = 228.0
|
|
## GET MODEL FROM LITELLM.MODEL_INFO
|
|
model_info = litellm.get_model_info(model=model_name, custom_llm_provider=provider)
|
|
|
|
## EXPECTED COST
|
|
if above_128k:
|
|
assert (
|
|
model_info["input_cost_per_token_above_128k_tokens"] is not None
|
|
), "model info for model={} does not have pricing for > 128k tokens\nmodel_info={}".format(
|
|
model_name, model_info
|
|
)
|
|
assert (
|
|
model_info["output_cost_per_token_above_128k_tokens"] is not None
|
|
), "model info for model={} does not have pricing for > 128k tokens\nmodel_info={}".format(
|
|
model_name, model_info
|
|
)
|
|
input_cost = (
|
|
prompt_tokens * model_info["input_cost_per_token_above_128k_tokens"]
|
|
)
|
|
output_cost = (
|
|
output_tokens * model_info["output_cost_per_token_above_128k_tokens"]
|
|
)
|
|
else:
|
|
input_cost = prompt_tokens * model_info["input_cost_per_token"]
|
|
output_cost = output_tokens * model_info["output_cost_per_token"]
|
|
|
|
## CALCULATED COST
|
|
calculated_input_cost, calculated_output_cost = cost_per_token(
|
|
model=model_name,
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=output_tokens,
|
|
custom_llm_provider=provider,
|
|
)
|
|
|
|
assert calculated_input_cost == input_cost
|
|
assert calculated_output_cost == output_cost
|
|
|
|
|
|
def _count_characters(text):
|
|
# Remove white spaces and count characters
|
|
filtered_text = "".join(char for char in text if not char.isspace())
|
|
return len(filtered_text)
|
|
|
|
|
|
def test_vertex_ai_completion_cost():
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
text = "The quick brown fox jumps over the lazy dog."
|
|
characters = _count_characters(text=text)
|
|
|
|
model_info = litellm.get_model_info(model="gemini-1.5-flash")
|
|
|
|
print("\nExpected model info:\n{}\n\n".format(model_info))
|
|
|
|
expected_input_cost = characters * model_info["input_cost_per_character"]
|
|
|
|
## CALCULATED COST
|
|
calculated_input_cost, calculated_output_cost = cost_per_token(
|
|
model="gemini-1.5-flash",
|
|
custom_llm_provider="vertex_ai",
|
|
prompt_characters=characters,
|
|
completion_characters=0,
|
|
)
|
|
|
|
assert round(expected_input_cost, 6) == round(calculated_input_cost, 6)
|
|
print("expected_input_cost: {}".format(expected_input_cost))
|
|
print("calculated_input_cost: {}".format(calculated_input_cost))
|
|
|
|
|
|
# @pytest.mark.skip(reason="new test - WIP, working on fixing this")
|
|
def test_vertex_ai_medlm_completion_cost():
|
|
"""Test for medlm completion cost."""
|
|
|
|
with pytest.raises(Exception) as e:
|
|
model = "vertex_ai/medlm-medium"
|
|
messages = [{"role": "user", "content": "Test MedLM completion cost."}]
|
|
predictive_cost = completion_cost(
|
|
model=model, messages=messages, custom_llm_provider="vertex_ai"
|
|
)
|
|
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
model = "vertex_ai/medlm-medium"
|
|
messages = [{"role": "user", "content": "Test MedLM completion cost."}]
|
|
predictive_cost = completion_cost(
|
|
model=model, messages=messages, custom_llm_provider="vertex_ai"
|
|
)
|
|
assert predictive_cost > 0
|
|
|
|
model = "vertex_ai/medlm-large"
|
|
messages = [{"role": "user", "content": "Test MedLM completion cost."}]
|
|
predictive_cost = completion_cost(model=model, messages=messages)
|
|
assert predictive_cost > 0
|
|
|
|
|
|
def test_vertex_ai_claude_completion_cost():
|
|
from litellm import Choices, Message, ModelResponse
|
|
from litellm.utils import Usage
|
|
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
litellm.set_verbose = True
|
|
input_tokens = litellm.token_counter(
|
|
model="vertex_ai/claude-3-sonnet@20240229",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
print(f"input_tokens: {input_tokens}")
|
|
output_tokens = litellm.token_counter(
|
|
model="vertex_ai/claude-3-sonnet@20240229",
|
|
text="It's all going well",
|
|
count_response_tokens=True,
|
|
)
|
|
print(f"output_tokens: {output_tokens}")
|
|
response = ModelResponse(
|
|
id="chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac",
|
|
choices=[
|
|
Choices(
|
|
finish_reason=None,
|
|
index=0,
|
|
message=Message(
|
|
content="It's all going well",
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=1700775391,
|
|
model="vertex_ai/claude-3-sonnet@20240229",
|
|
object="chat.completion",
|
|
system_fingerprint=None,
|
|
usage=Usage(
|
|
prompt_tokens=input_tokens,
|
|
completion_tokens=output_tokens,
|
|
total_tokens=input_tokens + output_tokens,
|
|
),
|
|
)
|
|
cost = litellm.completion_cost(
|
|
model="vertex_ai/claude-3-sonnet@20240229",
|
|
completion_response=response,
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
predicted_cost = input_tokens * 0.000003 + 0.000015 * output_tokens
|
|
assert cost == predicted_cost
|
|
|
|
|
|
def test_vertex_ai_embedding_completion_cost(caplog):
|
|
"""
|
|
Relevant issue - https://github.com/BerriAI/litellm/issues/4630
|
|
"""
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
text = "The quick brown fox jumps over the lazy dog."
|
|
input_tokens = litellm.token_counter(
|
|
model="vertex_ai/textembedding-gecko", text=text
|
|
)
|
|
|
|
model_info = litellm.get_model_info(model="vertex_ai/textembedding-gecko")
|
|
|
|
print("\nExpected model info:\n{}\n\n".format(model_info))
|
|
|
|
expected_input_cost = input_tokens * model_info["input_cost_per_token"]
|
|
|
|
## CALCULATED COST
|
|
calculated_input_cost, calculated_output_cost = cost_per_token(
|
|
model="textembedding-gecko",
|
|
custom_llm_provider="vertex_ai",
|
|
prompt_tokens=input_tokens,
|
|
call_type="aembedding",
|
|
)
|
|
|
|
assert round(expected_input_cost, 6) == round(calculated_input_cost, 6)
|
|
print("expected_input_cost: {}".format(expected_input_cost))
|
|
print("calculated_input_cost: {}".format(calculated_input_cost))
|
|
|
|
captured_logs = [rec.message for rec in caplog.records]
|
|
for item in captured_logs:
|
|
print("\nitem:{}\n".format(item))
|
|
if (
|
|
"litellm.litellm_core_utils.llm_cost_calc.google.cost_per_character(): Exception occured "
|
|
in item
|
|
):
|
|
raise Exception("Error log raised for calculating embedding cost")
|
|
|
|
|
|
# def test_vertex_ai_embedding_completion_cost_e2e():
|
|
# """
|
|
# Relevant issue - https://github.com/BerriAI/litellm/issues/4630
|
|
# """
|
|
# from litellm.tests.test_amazing_vertex_completion import load_vertex_ai_credentials
|
|
|
|
# load_vertex_ai_credentials()
|
|
# os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
# litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
# text = "The quick brown fox jumps over the lazy dog."
|
|
# input_tokens = litellm.token_counter(
|
|
# model="vertex_ai/textembedding-gecko", text=text
|
|
# )
|
|
|
|
# model_info = litellm.get_model_info(model="vertex_ai/textembedding-gecko")
|
|
|
|
# print("\nExpected model info:\n{}\n\n".format(model_info))
|
|
|
|
# expected_input_cost = input_tokens * model_info["input_cost_per_token"]
|
|
|
|
# ## CALCULATED COST
|
|
# resp = litellm.embedding(model="textembedding-gecko", input=[text])
|
|
|
|
# calculated_input_cost = resp._hidden_params["response_cost"]
|
|
|
|
# assert round(expected_input_cost, 6) == round(calculated_input_cost, 6)
|
|
# print("expected_input_cost: {}".format(expected_input_cost))
|
|
# print("calculated_input_cost: {}".format(calculated_input_cost))
|
|
|
|
# assert False
|
|
|
|
|
|
def test_completion_azure_ai():
|
|
try:
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
litellm.set_verbose = True
|
|
response = litellm.completion(
|
|
model="azure_ai/Mistral-large-nmefg",
|
|
messages=[{"content": "what llm are you", "role": "user"}],
|
|
max_tokens=15,
|
|
num_retries=3,
|
|
api_base=os.getenv("AZURE_AI_MISTRAL_API_BASE"),
|
|
api_key=os.getenv("AZURE_AI_MISTRAL_API_KEY"),
|
|
)
|
|
print(response)
|
|
|
|
assert "response_cost" in response._hidden_params
|
|
assert isinstance(response._hidden_params["response_cost"], float)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_completion_cost_hidden_params(sync_mode):
|
|
if sync_mode:
|
|
response = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
mock_response="Hello world",
|
|
)
|
|
else:
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
mock_response="Hello world",
|
|
)
|
|
|
|
assert "response_cost" in response._hidden_params
|
|
assert isinstance(response._hidden_params["response_cost"], float)
|
|
|
|
|
|
def test_vertex_ai_gemini_predict_cost():
|
|
model = "gemini-1.5-flash"
|
|
messages = [{"role": "user", "content": "Hey, hows it going???"}]
|
|
predictive_cost = completion_cost(model=model, messages=messages)
|
|
|
|
assert predictive_cost > 0
|
|
|
|
|
|
@pytest.mark.parametrize("model", ["openai/tts-1", "azure/tts-1"])
|
|
def test_completion_cost_tts(model):
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
cost = completion_cost(
|
|
model=model,
|
|
prompt="the quick brown fox jumped over the lazy dogs",
|
|
call_type="speech",
|
|
)
|
|
|
|
assert cost > 0
|