litellm-mirror/litellm/utils.py
2023-08-20 13:09:44 -07:00

1334 lines
53 KiB
Python

import sys
import dotenv, json, traceback, threading
import subprocess, os
import litellm, openai
import random, uuid, requests
import datetime, time
import tiktoken
encoding = tiktoken.get_encoding("cl100k_base")
import pkg_resources
from .integrations.helicone import HeliconeLogger
from .integrations.aispend import AISpendLogger
from .integrations.berrispend import BerriSpendLogger
from .integrations.supabase import Supabase
from openai.error import OpenAIError as OriginalError
from openai.openai_object import OpenAIObject
from .exceptions import (
AuthenticationError,
InvalidRequestError,
RateLimitError,
ServiceUnavailableError,
OpenAIError,
)
from typing import List, Dict, Union, Optional
####### ENVIRONMENT VARIABLES ###################
dotenv.load_dotenv() # Loading env variables using dotenv
sentry_sdk_instance = None
capture_exception = None
add_breadcrumb = None
posthog = None
slack_app = None
alerts_channel = None
heliconeLogger = None
aispendLogger = None
berrispendLogger = None
supabaseClient = None
callback_list: Optional[List[str]] = []
user_logger_fn = None
additional_details: Optional[Dict[str, str]] = {}
local_cache: Optional[Dict[str, str]] = {}
######## Model Response #########################
# All liteLLM Model responses will be in this format, Follows the OpenAI Format
# https://docs.litellm.ai/docs/completion/output
# {
# 'choices': [
# {
# 'finish_reason': 'stop',
# 'index': 0,
# 'message': {
# 'role': 'assistant',
# 'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# 'created': 1691429984.3852863,
# 'model': 'claude-instant-1',
# 'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41}
# }
class Message(OpenAIObject):
def __init__(self, content="default", role="assistant", **params):
super(Message, self).__init__(**params)
self.content = content
self.role = role
class Choices(OpenAIObject):
def __init__(self, finish_reason="stop", index=0, message=Message(), **params):
super(Choices, self).__init__(**params)
self.finish_reason = finish_reason
self.index = index
self.message = message
class ModelResponse(OpenAIObject):
def __init__(self, choices=None, created=None, model=None, usage=None, **params):
super(ModelResponse, self).__init__(**params)
self.choices = choices if choices else [Choices()]
self.created = created
self.model = model
self.usage = (
usage
if usage
else {
"prompt_tokens": None,
"completion_tokens": None,
"total_tokens": None,
}
)
def to_dict_recursive(self):
d = super().to_dict_recursive()
d["choices"] = [choice.to_dict_recursive() for choice in self.choices]
return d
############################################################
def print_verbose(print_statement):
if litellm.set_verbose:
print(f"LiteLLM: {print_statement}")
if random.random() <= 0.3:
print("Get help - https://discord.com/invite/wuPM9dRgDw")
####### Package Import Handler ###################
import importlib
import subprocess
def install_and_import(package: str):
if package in globals().keys():
print_verbose(f"{package} has already been imported.")
return
try:
# Import the module
module = importlib.import_module(package)
except ImportError:
print_verbose(f"{package} is not installed. Installing...")
subprocess.call([sys.executable, "-m", "pip", "install", package])
globals()[package] = importlib.import_module(package)
# except VersionConflict as vc:
# print_verbose(f"Detected version conflict for {package}. Upgrading...")
# subprocess.call([sys.executable, "-m", "pip", "install", "--upgrade", package])
# globals()[package] = importlib.import_module(package)
finally:
if package not in globals().keys():
globals()[package] = importlib.import_module(package)
##################################################
####### LOGGING ###################
# Logging function -> log the exact model details + what's being sent | Non-Blocking
class Logging:
def __init__(self, model, messages, optional_params, litellm_params):
self.model = model
self.messages = messages
self.optional_params = optional_params
self.litellm_params = litellm_params
self.logger_fn = litellm_params["logger_fn"]
self.model_call_details = {
"model": model,
"messages": messages,
"optional_params": self.optional_params,
"litellm_params": self.litellm_params,
}
def pre_call(self, input, api_key, additional_args={}):
try:
print(f"logging pre call for model: {self.model}")
self.model_call_details["input"] = input
self.model_call_details["api_key"] = api_key
self.model_call_details["additional_args"] = additional_args
## User Logging -> if you pass in a custom logging function
print_verbose(
f"Logging Details: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
)
if self.logger_fn and callable(self.logger_fn):
try:
self.logger_fn(
self.model_call_details
) # Expectation: any logger function passed in by the user should accept a dict object
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
## Input Integration Logging -> If you want to log the fact that an attempt to call the model was made
for callback in litellm.input_callback:
try:
if callback == "supabase":
print_verbose("reaches supabase for logging!")
model = self.model
messages = self.messages
print(f"litellm._thread_context: {litellm._thread_context}")
supabaseClient.input_log_event(
model=model,
messages=messages,
end_user=litellm._thread_context.user,
litellm_call_id=self.litellm_params["litellm_call_id"],
print_verbose=print_verbose,
)
except:
print_verbose(f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging with integrations {traceback.format_exc}")
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
def post_call(self, input, api_key, original_response, additional_args={}):
# Do something here
try:
self.model_call_details["input"] = input
self.model_call_details["api_key"] = api_key
self.model_call_details["original_response"] = original_response
self.model_call_details["additional_args"] = additional_args
## User Logging -> if you pass in a custom logging function
print_verbose(
f"Logging Details: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
)
if self.logger_fn and callable(self.logger_fn):
try:
self.logger_fn(
self.model_call_details
) # Expectation: any logger function passed in by the user should accept a dict object
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
pass
# Add more methods as needed
def exception_logging(
additional_args={},
logger_fn=None,
exception=None,
):
try:
model_call_details = {}
if exception:
model_call_details["exception"] = exception
model_call_details["additional_args"] = additional_args
## User Logging -> if you pass in a custom logging function or want to use sentry breadcrumbs
print_verbose(
f"Logging Details: logger_fn - {logger_fn} | callable(logger_fn) - {callable(logger_fn)}"
)
if logger_fn and callable(logger_fn):
try:
logger_fn(
model_call_details
) # Expectation: any logger function passed in by the user should accept a dict object
except Exception as e:
print(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
except Exception as e:
print(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
pass
####### CLIENT ###################
# make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking
def client(original_function):
def function_setup(
*args, **kwargs
): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc.
try:
global callback_list, add_breadcrumb, user_logger_fn
if (
len(litellm.input_callback) > 0 or len(litellm.success_callback) > 0 or len(litellm.failure_callback) > 0
) and len(callback_list) == 0:
callback_list = list(
set(litellm.input_callback + litellm.success_callback + litellm.failure_callback)
)
set_callbacks(
callback_list=callback_list,
)
if add_breadcrumb:
add_breadcrumb(
category="litellm.llm_call",
message=f"Positional Args: {args}, Keyword Args: {kwargs}",
level="info",
)
if "logger_fn" in kwargs:
user_logger_fn = kwargs["logger_fn"]
except: # DO NOT BLOCK running the function because of this
print_verbose(f"[Non-Blocking] {traceback.format_exc()}")
pass
def crash_reporting(*args, **kwargs):
if litellm.telemetry:
try:
model = args[0] if len(args) > 0 else kwargs["model"]
exception = kwargs["exception"] if "exception" in kwargs else None
custom_llm_provider = (
kwargs["custom_llm_provider"]
if "custom_llm_provider" in kwargs
else None
)
safe_crash_reporting(
model=model,
exception=exception,
custom_llm_provider=custom_llm_provider,
) # log usage-crash details. Do not log any user details. If you want to turn this off, set `litellm.telemetry=False`.
except:
# [Non-Blocking Error]
pass
def get_prompt(*args, **kwargs):
# make this safe checks, it should not throw any exceptions
if len(args) > 1:
messages = args[1]
prompt = " ".join(message["content"] for message in messages)
return prompt
if "messages" in kwargs:
messages = kwargs["messages"]
prompt = " ".join(message["content"] for message in messages)
return prompt
return None
def check_cache(*args, **kwargs):
try: # never block execution
prompt = get_prompt(*args, **kwargs)
if (
prompt != None and prompt in local_cache
): # check if messages / prompt exists
if litellm.caching_with_models:
# if caching with model names is enabled, key is prompt + model name
if (
"model" in kwargs
and kwargs["model"] in local_cache[prompt]["models"]
):
cache_key = prompt + kwargs["model"]
return local_cache[cache_key]
else: # caching only with prompts
result = local_cache[prompt]
return result
else:
return None
except:
return None
def add_cache(result, *args, **kwargs):
try: # never block execution
prompt = get_prompt(*args, **kwargs)
if litellm.caching_with_models: # caching with model + prompt
if (
"model" in kwargs
and kwargs["model"] in local_cache[prompt]["models"]
):
cache_key = prompt + kwargs["model"]
local_cache[cache_key] = result
else: # caching based only on prompts
local_cache[prompt] = result
except:
pass
def wrapper(*args, **kwargs):
start_time = None
result = None
try:
function_setup(*args, **kwargs)
litellm_call_id = str(uuid.uuid4())
kwargs["litellm_call_id"] = litellm_call_id
## [OPTIONAL] CHECK CACHE
start_time = datetime.datetime.now()
if (litellm.caching or litellm.caching_with_models) and (
cached_result := check_cache(*args, **kwargs)
) is not None:
result = cached_result
else:
## MODEL CALL
result = original_function(*args, **kwargs)
end_time = datetime.datetime.now()
## Add response to CACHE
if litellm.caching:
add_cache(result, *args, **kwargs)
## LOG SUCCESS
crash_reporting(*args, **kwargs)
my_thread = threading.Thread(
target=handle_success, args=(args, kwargs, result, start_time, end_time)
) # don't interrupt execution of main thread
my_thread.start()
return result
except Exception as e:
traceback_exception = traceback.format_exc()
crash_reporting(*args, **kwargs, exception=traceback_exception)
end_time = datetime.datetime.now()
my_thread = threading.Thread(
target=handle_failure,
args=(e, traceback_exception, start_time, end_time, args, kwargs),
) # don't interrupt execution of main thread
my_thread.start()
raise e
return wrapper
####### USAGE CALCULATOR ################
def token_counter(model, text):
# use tiktoken or anthropic's tokenizer depending on the model
num_tokens = 0
if "claude" in model:
install_and_import("anthropic")
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
anthropic = Anthropic()
num_tokens = anthropic.count_tokens(text)
else:
num_tokens = len(encoding.encode(text))
return num_tokens
def cost_per_token(model="gpt-3.5-turbo", prompt_tokens=0, completion_tokens=0):
## given
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = 0
model_cost_ref = litellm.model_cost
if model in model_cost_ref:
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
else:
# calculate average input cost
input_cost_sum = 0
output_cost_sum = 0
model_cost_ref = litellm.model_cost
for model in model_cost_ref:
input_cost_sum += model_cost_ref[model]["input_cost_per_token"]
output_cost_sum += model_cost_ref[model]["output_cost_per_token"]
avg_input_cost = input_cost_sum / len(model_cost_ref.keys())
avg_output_cost = output_cost_sum / len(model_cost_ref.keys())
prompt_tokens_cost_usd_dollar = avg_input_cost * prompt_tokens
completion_tokens_cost_usd_dollar = avg_output_cost * completion_tokens
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def completion_cost(model="gpt-3.5-turbo", prompt="", completion=""):
prompt_tokens = token_counter(model=model, text=prompt)
completion_tokens = token_counter(model=model, text=completion)
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(
model=model, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens
)
return prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
####### HELPER FUNCTIONS ################
def get_litellm_params(
return_async=False,
api_key=None,
force_timeout=600,
azure=False,
logger_fn=None,
verbose=False,
hugging_face=False,
replicate=False,
together_ai=False,
custom_llm_provider=None,
custom_api_base=None,
litellm_call_id=None,
):
litellm_params = {
"return_async": return_async,
"api_key": api_key,
"force_timeout": force_timeout,
"logger_fn": logger_fn,
"verbose": verbose,
"custom_llm_provider": custom_llm_provider,
"custom_api_base": custom_api_base,
"litellm_call_id": litellm_call_id
}
return litellm_params
def get_optional_params(
# 12 optional params
functions=[],
function_call="",
temperature=1,
top_p=1,
n=1,
stream=False,
stop=None,
max_tokens=float("inf"),
presence_penalty=0,
frequency_penalty=0,
logit_bias={},
user="",
deployment_id=None,
model=None,
custom_llm_provider="",
top_k=40,
):
optional_params = {}
if model in litellm.anthropic_models:
# handle anthropic params
if stream:
optional_params["stream"] = stream
if stop != None:
optional_params["stop_sequences"] = stop
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
return optional_params
elif model in litellm.cohere_models:
# handle cohere params
if stream:
optional_params["stream"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if max_tokens != float("inf"):
optional_params["max_tokens"] = max_tokens
if logit_bias != {}:
optional_params["logit_bias"] = logit_bias
return optional_params
elif custom_llm_provider == "replicate":
# any replicate models
# TODO: handle translating remaining replicate params
if stream:
optional_params["stream"] = stream
return optional_params
elif custom_llm_provider == "together_ai" or ("togethercomputer" in model):
if stream:
optional_params["stream_tokens"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if max_tokens != float("inf"):
optional_params["max_tokens"] = max_tokens
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty
elif (
model == "chat-bison"
): # chat-bison has diff args from chat-bison@001 ty Google
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if max_tokens != float("inf"):
optional_params["max_output_tokens"] = max_tokens
elif model in litellm.vertex_text_models:
# required params for all text vertex calls
# temperature=0.2, top_p=0.1, top_k=20
# always set temperature, top_p, top_k else, text bison fails
optional_params["temperature"] = temperature
optional_params["top_p"] = top_p
optional_params["top_k"] = top_k
else: # assume passing in params for openai/azure openai
if functions != []:
optional_params["functions"] = functions
if function_call != "":
optional_params["function_call"] = function_call
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if n != 1:
optional_params["n"] = n
if stream:
optional_params["stream"] = stream
if stop != None:
optional_params["stop"] = stop
if max_tokens != float("inf"):
optional_params["max_tokens"] = max_tokens
if presence_penalty != 0:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty
if logit_bias != {}:
optional_params["logit_bias"] = logit_bias
if user != "":
optional_params["user"] = user
if deployment_id != None:
optional_params["deployment_id"] = deployment_id
return optional_params
return optional_params
def load_test_model(
model: str,
custom_llm_provider: str = "",
custom_api_base: str = "",
prompt: str = "",
num_calls: int = 0,
force_timeout: int = 0,
):
test_prompt = "Hey, how's it going"
test_calls = 100
if prompt:
test_prompt = prompt
if num_calls:
test_calls = num_calls
messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)]
start_time = time.time()
try:
litellm.batch_completion(
model=model,
messages=messages,
custom_llm_provider=custom_llm_provider,
custom_api_base=custom_api_base,
force_timeout=force_timeout,
)
end_time = time.time()
response_time = end_time - start_time
return {
"total_response_time": response_time,
"calls_made": 100,
"status": "success",
"exception": None,
}
except Exception as e:
end_time = time.time()
response_time = end_time - start_time
return {
"total_response_time": response_time,
"calls_made": 100,
"status": "failed",
"exception": e,
}
def set_callbacks(callback_list):
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient
try:
for callback in callback_list:
print(f"callback: {callback}")
if callback == "sentry":
try:
import sentry_sdk
except ImportError:
print_verbose("Package 'sentry_sdk' is missing. Installing it...")
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "sentry_sdk"]
)
import sentry_sdk
sentry_sdk_instance = sentry_sdk
sentry_trace_rate = (
os.environ.get("SENTRY_API_TRACE_RATE")
if "SENTRY_API_TRACE_RATE" in os.environ
else "1.0"
)
sentry_sdk_instance.init(
dsn=os.environ.get("SENTRY_API_URL"),
traces_sample_rate=float(sentry_trace_rate),
)
capture_exception = sentry_sdk_instance.capture_exception
add_breadcrumb = sentry_sdk_instance.add_breadcrumb
elif callback == "posthog":
try:
from posthog import Posthog
except ImportError:
print_verbose("Package 'posthog' is missing. Installing it...")
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "posthog"]
)
from posthog import Posthog
posthog = Posthog(
project_api_key=os.environ.get("POSTHOG_API_KEY"),
host=os.environ.get("POSTHOG_API_URL"),
)
elif callback == "slack":
try:
from slack_bolt import App
except ImportError:
print_verbose("Package 'slack_bolt' is missing. Installing it...")
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "slack_bolt"]
)
from slack_bolt import App
slack_app = App(
token=os.environ.get("SLACK_API_TOKEN"),
signing_secret=os.environ.get("SLACK_API_SECRET"),
)
alerts_channel = os.environ["SLACK_API_CHANNEL"]
print_verbose(f"Initialized Slack App: {slack_app}")
elif callback == "helicone":
heliconeLogger = HeliconeLogger()
elif callback == "aispend":
aispendLogger = AISpendLogger()
elif callback == "berrispend":
berrispendLogger = BerriSpendLogger()
elif callback == "supabase":
print(f"instantiating supabase")
supabaseClient = Supabase()
except Exception as e:
raise e
def handle_failure(exception, traceback_exception, start_time, end_time, args, kwargs):
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, aispendLogger, berrispendLogger
try:
# print_verbose(f"handle_failure args: {args}")
# print_verbose(f"handle_failure kwargs: {kwargs}")
success_handler = additional_details.pop("success_handler", None)
failure_handler = additional_details.pop("failure_handler", None)
additional_details["Event_Name"] = additional_details.pop(
"failed_event_name", "litellm.failed_query"
)
print_verbose(f"self.failure_callback: {litellm.failure_callback}")
# print_verbose(f"additional_details: {additional_details}")
for callback in litellm.failure_callback:
try:
if callback == "slack":
slack_msg = ""
if len(kwargs) > 0:
for key in kwargs:
slack_msg += f"{key}: {kwargs[key]}\n"
if len(args) > 0:
for i, arg in enumerate(args):
slack_msg += f"LiteLLM_Args_{str(i)}: {arg}"
for detail in additional_details:
slack_msg += f"{detail}: {additional_details[detail]}\n"
slack_msg += f"Traceback: {traceback_exception}"
slack_app.client.chat_postMessage(
channel=alerts_channel, text=slack_msg
)
elif callback == "sentry":
capture_exception(exception)
elif callback == "posthog":
print_verbose(
f"inside posthog, additional_details: {len(additional_details.keys())}"
)
ph_obj = {}
if len(kwargs) > 0:
ph_obj = kwargs
if len(args) > 0:
for i, arg in enumerate(args):
ph_obj["litellm_args_" + str(i)] = arg
for detail in additional_details:
ph_obj[detail] = additional_details[detail]
event_name = additional_details["Event_Name"]
print_verbose(f"ph_obj: {ph_obj}")
print_verbose(f"PostHog Event Name: {event_name}")
if "user_id" in additional_details:
posthog.capture(
additional_details["user_id"], event_name, ph_obj
)
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
unique_id = str(uuid.uuid4())
posthog.capture(unique_id, event_name)
print_verbose(f"successfully logged to PostHog!")
elif callback == "berrispend":
print_verbose("reaches berrispend for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
result = {
"model": model,
"created": time.time(),
"error": traceback_exception,
"usage": {
"prompt_tokens": prompt_token_calculator(
model, messages=messages
),
"completion_tokens": 0,
},
}
berrispendLogger.log_event(
model=model,
messages=messages,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "aispend":
print_verbose("reaches aispend for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
result = {
"model": model,
"created": time.time(),
"usage": {
"prompt_tokens": prompt_token_calculator(
model, messages=messages
),
"completion_tokens": 0,
},
}
aispendLogger.log_event(
model=model,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "supabase":
print_verbose("reaches supabase for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
result = {
"model": model,
"created": time.time(),
"error": traceback_exception,
"usage": {
"prompt_tokens": prompt_token_calculator(
model, messages=messages
),
"completion_tokens": 0,
},
}
supabaseClient.log_event(
model=model,
messages=messages,
end_user=litellm._thread_context.user,
response_obj=result,
start_time=start_time,
end_time=end_time,
litellm_call_id=kwargs["litellm_call_id"],
print_verbose=print_verbose,
)
except:
print_verbose(
f"Error Occurred while logging failure: {traceback.format_exc()}"
)
pass
if failure_handler and callable(failure_handler):
call_details = {
"exception": exception,
"additional_details": additional_details,
}
failure_handler(call_details)
pass
except Exception as e:
## LOGGING
exception_logging(logger_fn=user_logger_fn, exception=e)
pass
def handle_success(args, kwargs, result, start_time, end_time):
global heliconeLogger, aispendLogger
try:
success_handler = additional_details.pop("success_handler", None)
failure_handler = additional_details.pop("failure_handler", None)
additional_details["Event_Name"] = additional_details.pop(
"successful_event_name", "litellm.succes_query"
)
for callback in litellm.success_callback:
try:
if callback == "posthog":
ph_obj = {}
for detail in additional_details:
ph_obj[detail] = additional_details[detail]
event_name = additional_details["Event_Name"]
if "user_id" in additional_details:
posthog.capture(
additional_details["user_id"], event_name, ph_obj
)
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
unique_id = str(uuid.uuid4())
posthog.capture(unique_id, event_name, ph_obj)
pass
elif callback == "slack":
slack_msg = ""
for detail in additional_details:
slack_msg += f"{detail}: {additional_details[detail]}\n"
slack_app.client.chat_postMessage(
channel=alerts_channel, text=slack_msg
)
elif callback == "helicone":
print_verbose("reaches helicone for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
heliconeLogger.log_success(
model=model,
messages=messages,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "aispend":
print_verbose("reaches aispend for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
aispendLogger.log_event(
model=model,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "berrispend":
print_verbose("reaches berrispend for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
berrispendLogger.log_event(
model=model,
messages=messages,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "supabase":
print_verbose("reaches supabase for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
print(f"litellm._thread_context: {litellm._thread_context}")
supabaseClient.log_event(
model=model,
messages=messages,
end_user=litellm._thread_context.user,
response_obj=result,
start_time=start_time,
end_time=end_time,
litellm_call_id=kwargs["litellm_call_id"],
print_verbose=print_verbose,
)
except Exception as e:
## LOGGING
exception_logging(logger_fn=user_logger_fn, exception=e)
print_verbose(
f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}"
)
pass
if success_handler and callable(success_handler):
success_handler(args, kwargs)
pass
except Exception as e:
## LOGGING
exception_logging(logger_fn=user_logger_fn, exception=e)
print_verbose(
f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}"
)
pass
def prompt_token_calculator(model, messages):
# use tiktoken or anthropic's tokenizer depending on the model
text = " ".join(message["content"] for message in messages)
num_tokens = 0
if "claude" in model:
install_and_import("anthropic")
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
anthropic = Anthropic()
num_tokens = anthropic.count_tokens(text)
else:
num_tokens = len(encoding.encode(text))
return num_tokens
# integration helper function
def modify_integration(integration_name, integration_params):
global supabaseClient
if integration_name == "supabase":
if "table_name" in integration_params:
Supabase.supabase_table_name = integration_params["table_name"]
def exception_type(model, original_exception, custom_llm_provider):
global user_logger_fn
exception_mapping_worked = False
try:
if isinstance(original_exception, OriginalError):
# Handle the OpenAIError
exception_mapping_worked = True
if custom_llm_provider == "azure":
original_exception.llm_provider = "azure"
else:
original_exception.llm_provider = "openai"
raise original_exception
elif model:
error_str = str(original_exception)
if isinstance(original_exception, BaseException):
exception_type = type(original_exception).__name__
else:
exception_type = ""
if "claude" in model: # one of the anthropics
if hasattr(original_exception, "status_code"):
print_verbose(f"status_code: {original_exception.status_code}")
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"AnthropicException - {original_exception.message}",
llm_provider="anthropic",
)
elif original_exception.status_code == 400:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"AnthropicException - {original_exception.message}",
model=model,
llm_provider="anthropic",
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"AnthropicException - {original_exception.message}",
llm_provider="anthropic",
)
elif (
"Could not resolve authentication method. Expected either api_key or auth_token to be set."
in error_str
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"AnthropicException - {original_exception.message}",
llm_provider="anthropic",
)
elif "replicate" in model:
if "Incorrect authentication token" in error_str:
exception_mapping_worked = True
raise AuthenticationError(
message=f"ReplicateException - {error_str}",
llm_provider="replicate",
)
elif exception_type == "ModelError":
exception_mapping_worked = True
raise InvalidRequestError(
message=f"ReplicateException - {error_str}",
model=model,
llm_provider="replicate",
)
elif "Request was throttled" in error_str:
exception_mapping_worked = True
raise RateLimitError(
message=f"ReplicateException - {error_str}",
llm_provider="replicate",
)
elif (
exception_type == "ReplicateError"
): ## ReplicateError implies an error on Replicate server side, not user side
raise ServiceUnavailableError(
message=f"ReplicateException - {error_str}",
llm_provider="replicate",
)
elif model == "command-nightly": # Cohere
if (
"invalid api token" in error_str
or "No API key provided." in error_str
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
)
elif "too many tokens" in error_str:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"CohereException - {original_exception.message}",
model=model,
llm_provider="cohere",
)
elif (
"CohereConnectionError" in exception_type
): # cohere seems to fire these errors when we load test it (1k+ messages / min)
exception_mapping_worked = True
raise RateLimitError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
)
elif custom_llm_provider == "huggingface":
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"HuggingfaceException - {original_exception.message}",
llm_provider="huggingface",
)
elif original_exception.status_code == 400:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"HuggingfaceException - {original_exception.message}",
model=model,
llm_provider="huggingface",
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"HuggingfaceException - {original_exception.message}",
llm_provider="huggingface",
)
raise original_exception # base case - return the original exception
else:
raise original_exception
except Exception as e:
## LOGGING
exception_logging(
logger_fn=user_logger_fn,
additional_args={
"exception_mapping_worked": exception_mapping_worked,
"original_exception": original_exception,
},
exception=e,
)
if exception_mapping_worked:
raise e
else: # don't let an error with mapping interrupt the user from receiving an error from the llm api calls
raise original_exception
def safe_crash_reporting(model=None, exception=None, custom_llm_provider=None):
data = {
"model": model,
"exception": str(exception),
"custom_llm_provider": custom_llm_provider,
}
threading.Thread(target=litellm_telemetry, args=(data,)).start()
def litellm_telemetry(data):
# Load or generate the UUID
uuid_file = "litellm_uuid.txt"
try:
# Try to open the file and load the UUID
with open(uuid_file, "r") as file:
uuid_value = file.read()
if uuid_value:
uuid_value = uuid_value.strip()
else:
raise FileNotFoundError
except FileNotFoundError:
# Generate a new UUID if the file doesn't exist or is empty
new_uuid = uuid.uuid4()
uuid_value = str(new_uuid)
with open(uuid_file, "w") as file:
file.write(uuid_value)
except:
# [Non-Blocking Error]
return
try:
# Prepare the data to send to litellm logging api
payload = {
"uuid": uuid_value,
"data": data,
"version": pkg_resources.get_distribution("litellm").version,
}
# Make the POST request to litellm logging api
response = requests.post(
"https://litellm.berri.ai/logging",
headers={"Content-Type": "application/json"},
json=payload,
)
response.raise_for_status() # Raise an exception for HTTP errors
except:
# [Non-Blocking Error]
return
######### Secret Manager ############################
# checks if user has passed in a secret manager client
# if passed in then checks the secret there
def get_secret(secret_name):
if litellm.secret_manager_client != None:
# TODO: check which secret manager is being used
# currently only supports Infisical
secret = litellm.secret_manager_client.get_secret(secret_name).secret_value
if secret != None:
return secret # if secret found in secret manager return it
else:
raise ValueError(f"Secret '{secret_name}' not found in secret manager")
elif litellm.api_key != None: # if users use litellm default key
return litellm.api_key
else:
return os.environ.get(secret_name)
######## Streaming Class ############################
# wraps the completion stream to return the correct format for the model
# replicate/anthropic/cohere
class CustomStreamWrapper:
def __init__(self, completion_stream, model, custom_llm_provider=None):
self.model = model
self.custom_llm_provider = custom_llm_provider
if model in litellm.cohere_models:
# cohere does not return an iterator, so we need to wrap it in one
self.completion_stream = iter(completion_stream)
elif model == "together_ai":
self.completion_stream = iter(completion_stream)
else:
self.completion_stream = completion_stream
def __iter__(self):
return self
def handle_anthropic_chunk(self, chunk):
str_line = chunk.decode("utf-8") # Convert bytes to string
if str_line.startswith("data:"):
data_json = json.loads(str_line[5:])
return data_json.get("completion", "")
return ""
def handle_together_ai_chunk(self, chunk):
chunk = chunk.decode("utf-8")
text_index = chunk.find('"text":"') # this checks if text: exists
text_start = text_index + len('"text":"')
text_end = chunk.find('"}', text_start)
if text_index != -1 and text_end != -1:
extracted_text = chunk[text_start:text_end]
return extracted_text
else:
return ""
def handle_huggingface_chunk(self, chunk):
chunk = chunk.decode("utf-8")
if chunk.startswith("data:"):
data_json = json.loads(chunk[5:])
if "token" in data_json and "text" in data_json["token"]:
return data_json["token"]["text"]
else:
return ""
return ""
def __next__(self):
completion_obj = {"role": "assistant", "content": ""}
if self.model in litellm.anthropic_models:
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_anthropic_chunk(chunk)
elif self.model == "replicate":
chunk = next(self.completion_stream)
completion_obj["content"] = chunk
elif (self.model == "together_ai") or ("togethercomputer" in self.model):
chunk = next(self.completion_stream)
text_data = self.handle_together_ai_chunk(chunk)
if text_data == "":
return self.__next__()
completion_obj["content"] = text_data
elif self.model in litellm.cohere_models:
chunk = next(self.completion_stream)
completion_obj["content"] = chunk.text
elif self.custom_llm_provider and self.custom_llm_provider == "huggingface":
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_huggingface_chunk(chunk)
# return this for all models
return {"choices": [{"delta": completion_obj}]}
########## Reading Config File ############################
def read_config_args(config_path):
try:
import os
current_path = os.getcwd()
with open(config_path, "r") as config_file:
config = json.load(config_file)
# read keys/ values from config file and return them
return config
except Exception as e:
print("An error occurred while reading config:", str(e))
raise e
########## ollama implementation ############################
import aiohttp
async def get_ollama_response_stream(
api_base="http://localhost:11434", model="llama2", prompt="Why is the sky blue?"
):
session = aiohttp.ClientSession()
url = f"{api_base}/api/generate"
data = {
"model": model,
"prompt": prompt,
}
try:
async with session.post(url, json=data) as resp:
async for line in resp.content.iter_any():
if line:
try:
json_chunk = line.decode("utf-8")
chunks = json_chunk.split("\n")
for chunk in chunks:
if chunk.strip() != "":
j = json.loads(chunk)
if "response" in j:
completion_obj = {
"role": "assistant",
"content": "",
}
completion_obj["content"] = j["response"]
yield {"choices": [{"delta": completion_obj}]}
# self.responses.append(j["response"])
# yield "blank"
except Exception as e:
print(f"Error decoding JSON: {e}")
finally:
await session.close()
async def stream_to_string(generator):
response = ""
async for chunk in generator:
response += chunk["content"]
return response
########## Together AI streaming #############################
async def together_ai_completion_streaming(json_data, headers):
session = aiohttp.ClientSession()
url = "https://api.together.xyz/inference"
# headers = {
# 'Authorization': f'Bearer {together_ai_token}',
# 'Content-Type': 'application/json'
# }
# data = {
# "model": "togethercomputer/llama-2-70b-chat",
# "prompt": "write 1 page on the topic of the history of the united state",
# "max_tokens": 1000,
# "temperature": 0.7,
# "top_p": 0.7,
# "top_k": 50,
# "repetition_penalty": 1,
# "stream_tokens": True
# }
try:
async with session.post(url, json=json_data, headers=headers) as resp:
async for line in resp.content.iter_any():
# print(line)
if line:
try:
json_chunk = line.decode("utf-8")
json_string = json_chunk.split("data: ")[1]
# Convert the JSON string to a dictionary
data_dict = json.loads(json_string)
completion_response = data_dict["choices"][0]["text"]
completion_obj = {"role": "assistant", "content": ""}
completion_obj["content"] = completion_response
yield {"choices": [{"delta": completion_obj}]}
except:
pass
finally:
await session.close()