litellm-mirror/tests/llm_translation/test_openai.py
2025-03-22 11:36:34 -07:00

460 lines
15 KiB
Python

import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, patch
from typing import Optional
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse
from base_llm_unit_tests import BaseLLMChatTest
import asyncio
from litellm.types.llms.openai import (
ChatCompletionAnnotation,
ChatCompletionAnnotationURLCitation,
)
def test_openai_prediction_param():
litellm.set_verbose = True
code = """
/// <summary>
/// Represents a user with a first name, last name, and username.
/// </summary>
public class User
{
/// <summary>
/// Gets or sets the user's first name.
/// </summary>
public string FirstName { get; set; }
/// <summary>
/// Gets or sets the user's last name.
/// </summary>
public string LastName { get; set; }
/// <summary>
/// Gets or sets the user's username.
/// </summary>
public string Username { get; set; }
}
"""
completion = litellm.completion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
)
print(completion)
assert (
completion.usage.completion_tokens_details.accepted_prediction_tokens > 0
or completion.usage.completion_tokens_details.rejected_prediction_tokens > 0
)
@pytest.mark.asyncio
async def test_openai_prediction_param_mock():
"""
Tests that prediction parameter is correctly passed to the API
"""
litellm.set_verbose = True
code = """
/// <summary>
/// Represents a user with a first name, last name, and username.
/// </summary>
public class User
{
/// <summary>
/// Gets or sets the user's first name.
/// </summary>
public string FirstName { get; set; }
/// <summary>
/// Gets or sets the user's last name.
/// </summary>
public string LastName { get; set; }
/// <summary>
/// Gets or sets the user's username.
/// </summary>
public string Username { get; set; }
}
"""
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
@pytest.mark.asyncio
async def test_openai_prediction_param_with_caching():
"""
Tests using `prediction` parameter with caching
"""
from litellm.caching.caching import LiteLLMCacheType
import logging
from litellm._logging import verbose_logger
verbose_logger.setLevel(logging.DEBUG)
import time
litellm.set_verbose = True
litellm.cache = litellm.Cache(type=LiteLLMCacheType.LOCAL)
code = """
/// <summary>
/// Represents a user with a first name, last name, and username.
/// </summary>
public class User
{
/// <summary>
/// Gets or sets the user's first name.
/// </summary>
public string FirstName { get; set; }
/// <summary>
/// Gets or sets the user's last name.
/// </summary>
public string LastName { get; set; }
/// <summary>
/// Gets or sets the user's username.
/// </summary>
public string Username { get; set; }
}
"""
completion_response_1 = litellm.completion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
)
time.sleep(0.5)
# cache hit
completion_response_2 = litellm.completion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
)
assert completion_response_1.id == completion_response_2.id
completion_response_3 = litellm.completion(
model="gpt-4o-mini",
messages=[
{"role": "user", "content": "What is the first name of the user?"},
],
prediction={"type": "content", "content": code + "FirstName"},
)
assert completion_response_3.id != completion_response_1.id
@pytest.mark.asyncio()
async def test_vision_with_custom_model():
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["messages"] == [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
},
]
assert request_body["model"] == "my-custom-model"
assert request_body["max_tokens"] == 10
class TestOpenAIChatCompletion(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
return {"model": "gpt-4o-mini"}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass
def test_prompt_caching(self):
"""
Test that prompt caching works correctly.
Skip for now, as it's working locally but not in CI
"""
pass
def test_multilingual_requests(self):
"""
Tests that the provider can handle multilingual requests and invalid utf-8 sequences
Context: https://github.com/openai/openai-python/issues/1921
"""
base_completion_call_args = self.get_base_completion_call_args()
try:
response = self.completion_function(
**base_completion_call_args,
messages=[{"role": "user", "content": "你好世界!\ud83e, ö"}],
)
assert response is not None
except litellm.InternalServerError:
pytest.skip("Skipping test due to InternalServerError")
def test_prompt_caching(self):
"""
Works locally but CI/CD is failing this test. Temporary skip to push out a new release.
"""
pass
def test_completion_bad_org():
import litellm
litellm.set_verbose = True
_old_org = os.environ.get("OPENAI_ORGANIZATION", None)
os.environ["OPENAI_ORGANIZATION"] = "bad-org"
messages = [{"role": "user", "content": "hi"}]
with pytest.raises(Exception) as exc_info:
comp = litellm.completion(
model="gpt-4o-mini", messages=messages, organization="bad-org"
)
print(exc_info.value)
assert "header should match organization for API key" in str(exc_info.value)
if _old_org is not None:
os.environ["OPENAI_ORGANIZATION"] = _old_org
else:
del os.environ["OPENAI_ORGANIZATION"]
@patch("litellm.main.openai_chat_completions._get_openai_client")
def test_openai_max_retries_0(mock_get_openai_client):
import litellm
litellm.set_verbose = True
response = litellm.completion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "hi"}],
max_retries=0,
)
mock_get_openai_client.assert_called_once()
assert mock_get_openai_client.call_args.kwargs["max_retries"] == 0
@pytest.mark.parametrize("model", ["o1", "o1-preview", "o1-mini", "o3-mini"])
def test_o1_parallel_tool_calls(model):
litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": "foo",
}
],
parallel_tool_calls=True,
drop_params=True,
)
def test_openai_chat_completion_streaming_handler_reasoning_content():
from litellm.llms.openai.chat.gpt_transformation import (
OpenAIChatCompletionStreamingHandler,
)
from unittest.mock import MagicMock
streaming_handler = OpenAIChatCompletionStreamingHandler(
streaming_response=MagicMock(),
sync_stream=True,
)
response = streaming_handler.chunk_parser(
chunk={
"id": "e89b6501-8ac2-464c-9550-7cd3daf94350",
"object": "chat.completion.chunk",
"created": 1741037890,
"model": "deepseek-reasoner",
"system_fingerprint": "fp_5417b77867_prod0225",
"choices": [
{
"index": 0,
"delta": {"content": None, "reasoning_content": "."},
"logprobs": None,
"finish_reason": None,
}
],
}
)
assert response.choices[0].delta.reasoning_content == "."
def validate_response_url_citation(url_citation: ChatCompletionAnnotationURLCitation):
assert "end_index" in url_citation
assert "start_index" in url_citation
assert "url" in url_citation
def validate_web_search_annotations(annotations: ChatCompletionAnnotation):
"""validates litellm response contains web search annotations"""
print("annotations: ", annotations)
assert annotations is not None
assert isinstance(annotations, list)
for annotation in annotations:
assert annotation["type"] == "url_citation"
url_citation: ChatCompletionAnnotationURLCitation = annotation["url_citation"]
validate_response_url_citation(url_citation)
def test_openai_web_search():
"""Makes a simple web search request and validates the response contains web search annotations and all expected fields are present"""
litellm._turn_on_debug()
response = litellm.completion(
model="openai/gpt-4o-search-preview",
messages=[
{
"role": "user",
"content": "What was a positive news story from today?",
}
],
)
print("litellm response: ", response.model_dump_json(indent=4))
message = response.choices[0].message
annotations: ChatCompletionAnnotation = message.annotations
validate_web_search_annotations(annotations)
def test_openai_web_search_streaming():
"""Makes a simple web search request and validates the response contains web search annotations and all expected fields are present"""
# litellm._turn_on_debug()
test_openai_web_search: Optional[ChatCompletionAnnotation] = None
response = litellm.completion(
model="openai/gpt-4o-search-preview",
messages=[
{
"role": "user",
"content": "What was a positive news story from today?",
}
],
stream=True,
)
for chunk in response:
print("litellm response chunk: ", chunk)
if (
hasattr(chunk.choices[0].delta, "annotations")
and chunk.choices[0].delta.annotations is not None
):
test_openai_web_search = chunk.choices[0].delta.annotations
# Assert this request has at-least one web search annotation
assert test_openai_web_search is not None
validate_web_search_annotations(test_openai_web_search)