mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
* fix(azure.py): handle /openai/deployment in azure api base * fix(factory.py): fix faulty anthropic tool result translation check Fixes https://github.com/BerriAI/litellm/issues/6422 * fix(gpt_transformation.py): add support for parallel_tool_calls to azure Fixes https://github.com/BerriAI/litellm/issues/6440 * fix(factory.py): support anthropic prompt caching for tool results * fix(vertex_ai/common_utils): don't pop non-null required field Fixes https://github.com/BerriAI/litellm/issues/6426 * feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini Closes https://github.com/BerriAI/litellm/issues/6434 * build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models Closes https://github.com/BerriAI/litellm/issues/6437 * fix(types/utils.py): fix linting * test: update test to include required fields * test: fix test * test: handle flaky test * test: remove e2e test - hitting gemini rate limits
119 lines
3.4 KiB
Python
119 lines
3.4 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
import traceback
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import io
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
|
|
import litellm
|
|
|
|
|
|
def test_completion_pydantic_obj_2():
|
|
from pydantic import BaseModel
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
litellm.set_verbose = True
|
|
|
|
class CalendarEvent(BaseModel):
|
|
name: str
|
|
date: str
|
|
participants: list[str]
|
|
|
|
class EventsList(BaseModel):
|
|
events: list[CalendarEvent]
|
|
|
|
messages = [
|
|
{"role": "user", "content": "List important events from the 20th century."}
|
|
]
|
|
expected_request_body = {
|
|
"contents": [
|
|
{
|
|
"role": "user",
|
|
"parts": [{"text": "List important events from the 20th century."}],
|
|
}
|
|
],
|
|
"generationConfig": {
|
|
"response_mime_type": "application/json",
|
|
"response_schema": {
|
|
"properties": {
|
|
"events": {
|
|
"items": {
|
|
"properties": {
|
|
"name": {"type": "string"},
|
|
"date": {"type": "string"},
|
|
"participants": {
|
|
"items": {"type": "string"},
|
|
"type": "array",
|
|
},
|
|
},
|
|
"required": [
|
|
"name",
|
|
"date",
|
|
"participants",
|
|
],
|
|
"type": "object",
|
|
},
|
|
"type": "array",
|
|
}
|
|
},
|
|
"required": [
|
|
"events",
|
|
],
|
|
"type": "object",
|
|
},
|
|
},
|
|
}
|
|
client = HTTPHandler()
|
|
with patch.object(client, "post", new=MagicMock()) as mock_post:
|
|
mock_post.return_value = expected_request_body
|
|
try:
|
|
litellm.completion(
|
|
model="gemini/gemini-1.5-pro",
|
|
messages=messages,
|
|
response_format=EventsList,
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
mock_post.assert_called_once()
|
|
|
|
print(mock_post.call_args.kwargs)
|
|
|
|
assert mock_post.call_args.kwargs["json"] == expected_request_body
|
|
|
|
|
|
def test_build_vertex_schema():
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.common_utils import (
|
|
_build_vertex_schema,
|
|
)
|
|
import json
|
|
|
|
schema = {
|
|
"type": "object",
|
|
"properties": {
|
|
"recipes": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "object",
|
|
"properties": {"recipe_name": {"type": "string"}},
|
|
"required": ["recipe_name"],
|
|
},
|
|
}
|
|
},
|
|
"required": ["recipes"],
|
|
}
|
|
|
|
new_schema = _build_vertex_schema(schema)
|
|
print(f"new_schema: {new_schema}")
|
|
assert new_schema["type"] == schema["type"]
|
|
assert new_schema["properties"] == schema["properties"]
|
|
assert "required" in new_schema and new_schema["required"] == schema["required"]
|