mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* refactor: move gemini translation logic inside the transformation.py file easier to isolate the gemini translation logic * fix(gemini-transformation): support multiple tool calls in message body Merges https://github.com/BerriAI/litellm/pull/6487/files * test(test_vertex.py): add remaining tests from https://github.com/BerriAI/litellm/pull/6487 * fix(gemini-transformation): return tool calls for multiple tool calls * fix: support passing logprobs param for vertex + gemini * feat(vertex_ai): add logprobs support for gemini calls * fix(anthropic/chat/transformation.py): fix disable parallel tool use flag * fix: fix linting error * fix(_logging.py): log stacktrace information in json logs Closes https://github.com/BerriAI/litellm/issues/6497 * fix(utils.py): fix mem leak for async stream + completion Uses a global executor pool instead of creating a new thread on each request Fixes https://github.com/BerriAI/litellm/issues/6404 * fix(factory.py): handle tool call + content in assistant message for bedrock * fix: fix import * fix(factory.py): maintain support for content as a str in assistant response * fix: fix import * test: cleanup test * fix(vertex_and_google_ai_studio/): return none for content if no str value * test: retry flaky tests * (UI) Fix viewing members, keys in a team + added testing (#6514) * fix listing teams on ui * LiteLLM Minor Fixes & Improvements (10/28/2024) (#6475) * fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param Fixes https://github.com/BerriAI/litellm/issues/6456 * feat(anthropic/chat/transformation.py): support anthropic computer tool use Closes https://github.com/BerriAI/litellm/issues/6427 * fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai Fixes issue when trying to call vertex from vercel sdk * fix(main.py): add 'extra_headers' support for azure on all translation endpoints Fixes https://github.com/BerriAI/litellm/issues/6465 * fix: fix linting errors * fix(transformation.py): handle no beta headers for anthropic * test: cleanup test * fix: fix linting error * fix: fix linting errors * fix: fix linting errors * fix(transformation.py): handle dummy tool call * fix(main.py): fix linting error * fix(azure.py): pass required param * LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441) * fix(azure.py): handle /openai/deployment in azure api base * fix(factory.py): fix faulty anthropic tool result translation check Fixes https://github.com/BerriAI/litellm/issues/6422 * fix(gpt_transformation.py): add support for parallel_tool_calls to azure Fixes https://github.com/BerriAI/litellm/issues/6440 * fix(factory.py): support anthropic prompt caching for tool results * fix(vertex_ai/common_utils): don't pop non-null required field Fixes https://github.com/BerriAI/litellm/issues/6426 * feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini Closes https://github.com/BerriAI/litellm/issues/6434 * build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models Closes https://github.com/BerriAI/litellm/issues/6437 * fix(types/utils.py): fix linting * test: update test to include required fields * test: fix test * test: handle flaky test * test: remove e2e test - hitting gemini rate limits * Litellm dev 10 26 2024 (#6472) * docs(exception_mapping.md): add missing exception types Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183 * fix(main.py): register custom model pricing with specific key Ensure custom model pricing is registered to the specific model+provider key combination * test: make testing more robust for custom pricing * fix(redis_cache.py): instrument otel logging for sync redis calls ensures complete coverage for all redis cache calls * (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected (#6471) * test test_dual_cache_get_set * unit testing for dual cache * fix async_set_cache_sadd * test_dual_cache_local_only * redis otel tracing + async support for latency routing (#6452) * docs(exception_mapping.md): add missing exception types Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183 * fix(main.py): register custom model pricing with specific key Ensure custom model pricing is registered to the specific model+provider key combination * test: make testing more robust for custom pricing * fix(redis_cache.py): instrument otel logging for sync redis calls ensures complete coverage for all redis cache calls * refactor: pass parent_otel_span for redis caching calls in router allows for more observability into what calls are causing latency issues * test: update tests with new params * refactor: ensure e2e otel tracing for router * refactor(router.py): add more otel tracing acrosss router catch all latency issues for router requests * fix: fix linting error * fix(router.py): fix linting error * fix: fix test * test: fix tests * fix(dual_cache.py): pass ttl to redis cache * fix: fix param * fix(dual_cache.py): set default value for parent_otel_span * fix(transformation.py): support 'response_format' for anthropic calls * fix(transformation.py): check for cache_control inside 'function' block * fix: fix linting error * fix: fix linting errors --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> --------- Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com> * ui new build * Add retry strat (#6520) Signed-off-by: dbczumar <corey.zumar@databricks.com> * (fix) slack alerting - don't spam the failed cost tracking alert for the same model (#6543) * fix use failing_model as cache key for failed_tracking_alert * fix use standard logging payload for getting response cost * fix kwargs.get("response_cost") * fix getting response cost * (feat) add XAI ChatCompletion Support (#6373) * init commit for XAI * add full logic for xai chat completion * test_completion_xai * docs xAI * add xai/grok-beta * test_xai_chat_config_get_openai_compatible_provider_info * test_xai_chat_config_map_openai_params * add xai streaming test --------- Signed-off-by: dbczumar <corey.zumar@databricks.com> Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
174 lines
6 KiB
Python
174 lines
6 KiB
Python
import json
|
|
import re
|
|
import threading
|
|
from datetime import datetime
|
|
from typing import Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
|
VertexLLM,
|
|
)
|
|
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
|
|
from litellm.types.utils import StandardPassThroughResponseObject
|
|
|
|
|
|
class PassThroughEndpointLogging:
|
|
def __init__(self):
|
|
self.TRACKED_VERTEX_ROUTES = [
|
|
"generateContent",
|
|
"streamGenerateContent",
|
|
"predict",
|
|
]
|
|
|
|
async def pass_through_async_success_handler(
|
|
self,
|
|
httpx_response: httpx.Response,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
url_route: str,
|
|
result: str,
|
|
start_time: datetime,
|
|
end_time: datetime,
|
|
cache_hit: bool,
|
|
**kwargs,
|
|
):
|
|
if self.is_vertex_route(url_route):
|
|
await self.vertex_passthrough_handler(
|
|
httpx_response=httpx_response,
|
|
logging_obj=logging_obj,
|
|
url_route=url_route,
|
|
result=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=cache_hit,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
standard_logging_response_object = StandardPassThroughResponseObject(
|
|
response=httpx_response.text
|
|
)
|
|
threading.Thread(
|
|
target=logging_obj.success_handler,
|
|
args=(
|
|
standard_logging_response_object,
|
|
start_time,
|
|
end_time,
|
|
cache_hit,
|
|
),
|
|
).start()
|
|
await logging_obj.async_success_handler(
|
|
result=(
|
|
json.dumps(result)
|
|
if isinstance(result, dict)
|
|
else standard_logging_response_object
|
|
),
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=False,
|
|
**kwargs,
|
|
)
|
|
|
|
def is_vertex_route(self, url_route: str):
|
|
for route in self.TRACKED_VERTEX_ROUTES:
|
|
if route in url_route:
|
|
return True
|
|
return False
|
|
|
|
def extract_model_from_url(self, url: str) -> str:
|
|
pattern = r"/models/([^:]+)"
|
|
match = re.search(pattern, url)
|
|
if match:
|
|
return match.group(1)
|
|
return "unknown"
|
|
|
|
async def vertex_passthrough_handler(
|
|
self,
|
|
httpx_response: httpx.Response,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
url_route: str,
|
|
result: str,
|
|
start_time: datetime,
|
|
end_time: datetime,
|
|
cache_hit: bool,
|
|
**kwargs,
|
|
):
|
|
if "generateContent" in url_route:
|
|
model = self.extract_model_from_url(url_route)
|
|
|
|
instance_of_vertex_llm = litellm.VertexGeminiConfig()
|
|
litellm_model_response: litellm.ModelResponse = (
|
|
instance_of_vertex_llm._transform_response(
|
|
model=model,
|
|
messages=[
|
|
{"role": "user", "content": "no-message-pass-through-endpoint"}
|
|
],
|
|
response=httpx_response,
|
|
model_response=litellm.ModelResponse(),
|
|
logging_obj=logging_obj,
|
|
optional_params={},
|
|
litellm_params={},
|
|
api_key="",
|
|
data={},
|
|
print_verbose=litellm.print_verbose,
|
|
encoding=None,
|
|
)
|
|
)
|
|
logging_obj.model = litellm_model_response.model or model
|
|
logging_obj.model_call_details["model"] = logging_obj.model
|
|
|
|
await logging_obj.async_success_handler(
|
|
result=litellm_model_response,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=cache_hit,
|
|
**kwargs,
|
|
)
|
|
elif "predict" in url_route:
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.image_generation.image_generation_handler import (
|
|
VertexImageGeneration,
|
|
)
|
|
from litellm.types.utils import PassthroughCallTypes
|
|
|
|
vertex_image_generation_class = VertexImageGeneration()
|
|
|
|
model = self.extract_model_from_url(url_route)
|
|
_json_response = httpx_response.json()
|
|
|
|
litellm_prediction_response: Union[
|
|
litellm.ModelResponse, litellm.EmbeddingResponse, litellm.ImageResponse
|
|
] = litellm.ModelResponse()
|
|
if vertex_image_generation_class.is_image_generation_response(
|
|
_json_response
|
|
):
|
|
litellm_prediction_response = (
|
|
vertex_image_generation_class.process_image_generation_response(
|
|
_json_response,
|
|
model_response=litellm.ImageResponse(),
|
|
model=model,
|
|
)
|
|
)
|
|
|
|
logging_obj.call_type = (
|
|
PassthroughCallTypes.passthrough_image_generation.value
|
|
)
|
|
else:
|
|
litellm_prediction_response = litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
|
|
response=_json_response,
|
|
model=model,
|
|
model_response=litellm.EmbeddingResponse(),
|
|
)
|
|
if isinstance(litellm_prediction_response, litellm.EmbeddingResponse):
|
|
litellm_prediction_response.model = model
|
|
|
|
logging_obj.model = model
|
|
logging_obj.model_call_details["model"] = logging_obj.model
|
|
|
|
await logging_obj.async_success_handler(
|
|
result=litellm_prediction_response,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=cache_hit,
|
|
**kwargs,
|
|
)
|