litellm-mirror/tests/local_testing/test_get_model_info.py
Krish Dholakia f966e279a6 LiteLLM Minor Fixes & Improvements (12/16/2024) - p1 (#7263)
* fix(factory.py): skip empty text blocks for bedrock user messages

Fixes https://github.com/BerriAI/litellm/issues/7169

* Add support for Gemini 2.0 GoogleSearch tool (#7257)

* Add support for google_search tool in gemini 2.0

* Add/modify tests

* Fix grounding check

* Remove 2.0 grounding test; exclude experimental model in VERTEX_MODELS_TO_NOT_TEST

* Swap order of tools

* DFix formatting

* fix(get_api_base.py): return api base in streaming response

Fixes https://github.com/BerriAI/litellm/issues/7249

Closes https://github.com/BerriAI/litellm/pull/7250

* fix(cost_calculator.py): only set base model to model if not none

Fixes https://github.com/BerriAI/litellm/issues/7223

* fix(cost_calculator.py): enforce stricter order when picking model for cost calculation

* fix(cost_calculator.py): fix '_select_model_name_for_cost_calc' to return model name with region name prefix if provided

* fix(utils.py): fix 'get_model_info()' to handle edge case where model name starts with custom llm provider AND custom llm provider is given

* fix(cost_calculator.py): handle `custom_llm_provider-` scenario

* fix(cost_calculator.py): e2e working tts cost tracking

ensures initial message is passed in, to cost calculator

* fix(factory.py): suppress linting errors

* fix(cost_calculator.py): strip llm provider from model name after selecting cost calc model

* fix(litellm_logging.py): store initial request in 'input' field + accept base_model to be passed in litellm_params directly

* test: handle none env var value in flaky test

* fix(litellm_logging.py): fix linting errors

---------

Co-authored-by: Sam B <samlingx@gmail.com>
2024-12-17 15:33:36 -08:00

160 lines
5.1 KiB
Python

# What is this?
## Unit testing for the 'get_model_info()' function
import os
import sys
import traceback
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import get_model_info
from unittest.mock import AsyncMock, MagicMock, patch
def test_get_model_info_simple_model_name():
"""
tests if model name given, and model exists in model info - the object is returned
"""
model = "claude-3-opus-20240229"
litellm.get_model_info(model)
def test_get_model_info_custom_llm_with_model_name():
"""
Tests if {custom_llm_provider}/{model_name} name given, and model exists in model info, the object is returned
"""
model = "anthropic/claude-3-opus-20240229"
litellm.get_model_info(model)
def test_get_model_info_custom_llm_with_same_name_vllm():
"""
Tests if {custom_llm_provider}/{model_name} name given, and model exists in model info, the object is returned
"""
model = "command-r-plus"
provider = "openai" # vllm is openai-compatible
try:
model_info = litellm.get_model_info(model, custom_llm_provider=provider)
print("model_info", model_info)
pytest.fail("Expected get model info to fail for an unmapped model/provider")
except Exception:
pass
def test_get_model_info_shows_correct_supports_vision():
info = litellm.get_model_info("gemini/gemini-1.5-flash")
print("info", info)
assert info["supports_vision"] is True
def test_get_model_info_shows_assistant_prefill():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
info = litellm.get_model_info("deepseek/deepseek-chat")
print("info", info)
assert info.get("supports_assistant_prefill") is True
def test_get_model_info_shows_supports_prompt_caching():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
info = litellm.get_model_info("deepseek/deepseek-chat")
print("info", info)
assert info.get("supports_prompt_caching") is True
def test_get_model_info_finetuned_models():
info = litellm.get_model_info("ft:gpt-3.5-turbo:my-org:custom_suffix:id")
print("info", info)
assert info["input_cost_per_token"] == 0.000003
def test_get_model_info_gemini_pro():
info = litellm.get_model_info("gemini-1.5-pro-002")
print("info", info)
assert info["key"] == "gemini-1.5-pro-002"
def test_get_model_info_ollama_chat():
from litellm.llms.ollama.completion.transformation import OllamaConfig
with patch.object(
litellm.module_level_client,
"post",
return_value=MagicMock(
json=lambda: {
"model_info": {"llama.context_length": 32768},
"template": "tools",
}
),
) as mock_client:
info = OllamaConfig().get_model_info("mistral")
assert info["supports_function_calling"] is True
info = get_model_info("ollama/mistral")
print("info", info)
assert info["supports_function_calling"] is True
mock_client.assert_called()
print(mock_client.call_args.kwargs)
assert mock_client.call_args.kwargs["json"]["name"] == "mistral"
def test_get_model_info_gemini():
"""
Tests if ALL gemini models have 'tpm' and 'rpm' in the model info
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
model_map = litellm.model_cost
for model, info in model_map.items():
if model.startswith("gemini/") and not "gemma" in model:
assert info.get("tpm") is not None, f"{model} does not have tpm"
assert info.get("rpm") is not None, f"{model} does not have rpm"
def test_get_model_info_bedrock_region():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
args = {
"model": "us.anthropic.claude-3-5-sonnet-20241022-v2:0",
"custom_llm_provider": "bedrock",
}
litellm.model_cost.pop("us.anthropic.claude-3-5-sonnet-20241022-v2:0", None)
info = litellm.get_model_info(**args)
print("info", info)
assert info["key"] == "anthropic.claude-3-5-sonnet-20241022-v2:0"
assert info["litellm_provider"] == "bedrock"
@pytest.mark.parametrize(
"model",
[
"ft:gpt-3.5-turbo:my-org:custom_suffix:id",
"ft:gpt-4-0613:my-org:custom_suffix:id",
"ft:davinci-002:my-org:custom_suffix:id",
"ft:gpt-4-0613:my-org:custom_suffix:id",
"ft:babbage-002:my-org:custom_suffix:id",
"gpt-35-turbo",
"ada",
],
)
def test_get_model_info_completion_cost_unit_tests(model):
info = litellm.get_model_info(model)
print("info", info)
def test_get_model_info_ft_model_with_provider_prefix():
args = {
"model": "openai/ft:gpt-3.5-turbo:my-org:custom_suffix:id",
"custom_llm_provider": "openai",
}
info = litellm.get_model_info(**args)
print("info", info)
assert info["key"] == "ft:gpt-3.5-turbo"