litellm-mirror/litellm/llms/nlp_cloud.py
2023-09-14 09:19:34 -07:00

103 lines
3.3 KiB
Python

import os
import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
class NLPCloudError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
def validate_environment(api_key):
headers = {
"accept": "application/json",
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Token {api_key}"
return headers
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
default_max_tokens_to_sample=None,
):
headers = validate_environment(api_key)
completion_url_fragment_1 = "https://api.nlpcloud.io/v1/gpu/"
completion_url_fragment_2 = "/generation"
model = model
text = " ".join(message["content"] for message in messages)
data = {
"text": text,
**optional_params,
}
completion_url = completion_url_fragment_1 + model + completion_url_fragment_2
## LOGGING
logging_obj.pre_call(
input=text,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging_obj.post_call(
input=text,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise NLPCloudError(message=response.text, status_code=response.status_code)
if "error" in completion_response:
raise NLPCloudError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
try:
model_response["choices"][0]["message"]["content"] = completion_response["generated_text"]
except:
raise NLPCloudError(message=json.dumps(completion_response), status_code=response.status_code)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = completion_response["nb_input_tokens"]
completion_tokens = completion_response["nb_generated_tokens"]
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass