mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* fix: fix type-checking errors * fix: fix additional type-checking errors * fix: additional type-checking error fixes * fix: fix additional type-checking errors * fix: additional type-check fixes * fix: fix all type-checking errors + add pyright to ci/cd * fix: fix incorrect import * ci(config.yml): use mypy on ci/cd * fix: fix type-checking errors in utils.py * fix: fix all type-checking errors on main.py * fix: fix mypy linting errors * fix(anthropic/cost_calculator.py): fix linting errors * fix: fix mypy linting errors * fix: fix linting errors
1185 lines
44 KiB
Python
1185 lines
44 KiB
Python
## Uses the huggingface text generation inference API
|
|
import copy
|
|
import enum
|
|
import json
|
|
import os
|
|
import time
|
|
import types
|
|
from enum import Enum
|
|
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union, get_args
|
|
|
|
import httpx
|
|
import requests
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
from litellm.secret_managers.main import get_secret_str
|
|
from litellm.types.completion import ChatCompletionMessageToolCallParam
|
|
from litellm.utils import Choices, CustomStreamWrapper, Message, ModelResponse, Usage
|
|
|
|
from .base import BaseLLM
|
|
from .prompt_templates.factory import custom_prompt, prompt_factory
|
|
|
|
|
|
class HuggingfaceError(Exception):
|
|
def __init__(
|
|
self,
|
|
status_code,
|
|
message,
|
|
request: Optional[httpx.Request] = None,
|
|
response: Optional[httpx.Response] = None,
|
|
):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
if request is not None:
|
|
self.request = request
|
|
else:
|
|
self.request = httpx.Request(
|
|
method="POST", url="https://api-inference.huggingface.co/models"
|
|
)
|
|
if response is not None:
|
|
self.response = response
|
|
else:
|
|
self.response = httpx.Response(
|
|
status_code=status_code, request=self.request
|
|
)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
hf_task_list = [
|
|
"text-generation-inference",
|
|
"conversational",
|
|
"text-classification",
|
|
"text-generation",
|
|
]
|
|
|
|
hf_tasks = Literal[
|
|
"text-generation-inference",
|
|
"conversational",
|
|
"text-classification",
|
|
"text-generation",
|
|
]
|
|
|
|
hf_tasks_embeddings = Literal[ # pipeline tags + hf tei endpoints - https://huggingface.github.io/text-embeddings-inference/#/
|
|
"sentence-similarity", "feature-extraction", "rerank", "embed", "similarity"
|
|
]
|
|
|
|
|
|
class HuggingfaceConfig:
|
|
"""
|
|
Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate
|
|
"""
|
|
|
|
hf_task: Optional[hf_tasks] = (
|
|
None # litellm-specific param, used to know the api spec to use when calling huggingface api
|
|
)
|
|
best_of: Optional[int] = None
|
|
decoder_input_details: Optional[bool] = None
|
|
details: Optional[bool] = True # enables returning logprobs + best of
|
|
max_new_tokens: Optional[int] = None
|
|
repetition_penalty: Optional[float] = None
|
|
return_full_text: Optional[bool] = (
|
|
False # by default don't return the input as part of the output
|
|
)
|
|
seed: Optional[int] = None
|
|
temperature: Optional[float] = None
|
|
top_k: Optional[int] = None
|
|
top_n_tokens: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
truncate: Optional[int] = None
|
|
typical_p: Optional[float] = None
|
|
watermark: Optional[bool] = None
|
|
|
|
def __init__(
|
|
self,
|
|
best_of: Optional[int] = None,
|
|
decoder_input_details: Optional[bool] = None,
|
|
details: Optional[bool] = None,
|
|
max_new_tokens: Optional[int] = None,
|
|
repetition_penalty: Optional[float] = None,
|
|
return_full_text: Optional[bool] = None,
|
|
seed: Optional[int] = None,
|
|
temperature: Optional[float] = None,
|
|
top_k: Optional[int] = None,
|
|
top_n_tokens: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
truncate: Optional[int] = None,
|
|
typical_p: Optional[float] = None,
|
|
watermark: Optional[bool] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
def get_special_options_params(self):
|
|
return ["use_cache", "wait_for_model"]
|
|
|
|
def get_supported_openai_params(self):
|
|
return [
|
|
"stream",
|
|
"temperature",
|
|
"max_tokens",
|
|
"max_completion_tokens",
|
|
"top_p",
|
|
"stop",
|
|
"n",
|
|
"echo",
|
|
]
|
|
|
|
def map_openai_params(
|
|
self, non_default_params: dict, optional_params: dict
|
|
) -> dict:
|
|
for param, value in non_default_params.items():
|
|
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
|
|
if param == "temperature":
|
|
if value == 0.0 or value == 0:
|
|
# hugging face exception raised when temp==0
|
|
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
|
|
value = 0.01
|
|
optional_params["temperature"] = value
|
|
if param == "top_p":
|
|
optional_params["top_p"] = value
|
|
if param == "n":
|
|
optional_params["best_of"] = value
|
|
optional_params["do_sample"] = (
|
|
True # Need to sample if you want best of for hf inference endpoints
|
|
)
|
|
if param == "stream":
|
|
optional_params["stream"] = value
|
|
if param == "stop":
|
|
optional_params["stop"] = value
|
|
if param == "max_tokens" or param == "max_completion_tokens":
|
|
# HF TGI raises the following exception when max_new_tokens==0
|
|
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
|
|
if value == 0:
|
|
value = 1
|
|
optional_params["max_new_tokens"] = value
|
|
if param == "echo":
|
|
# https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details
|
|
# Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False
|
|
optional_params["decoder_input_details"] = True
|
|
return optional_params
|
|
|
|
def get_hf_api_key(self) -> Optional[str]:
|
|
return get_secret_str("HUGGINGFACE_API_KEY")
|
|
|
|
|
|
def output_parser(generated_text: str):
|
|
"""
|
|
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.
|
|
|
|
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
|
|
"""
|
|
chat_template_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"]
|
|
for token in chat_template_tokens:
|
|
if generated_text.strip().startswith(token):
|
|
generated_text = generated_text.replace(token, "", 1)
|
|
if generated_text.endswith(token):
|
|
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
|
|
return generated_text
|
|
|
|
|
|
tgi_models_cache = None
|
|
conv_models_cache = None
|
|
|
|
|
|
def read_tgi_conv_models():
|
|
try:
|
|
global tgi_models_cache, conv_models_cache
|
|
# Check if the cache is already populated
|
|
# so we don't keep on reading txt file if there are 1k requests
|
|
if (tgi_models_cache is not None) and (conv_models_cache is not None):
|
|
return tgi_models_cache, conv_models_cache
|
|
# If not, read the file and populate the cache
|
|
tgi_models = set()
|
|
script_directory = os.path.dirname(os.path.abspath(__file__))
|
|
# Construct the file path relative to the script's directory
|
|
file_path = os.path.join(
|
|
script_directory,
|
|
"huggingface_llms_metadata",
|
|
"hf_text_generation_models.txt",
|
|
)
|
|
|
|
with open(file_path, "r") as file:
|
|
for line in file:
|
|
tgi_models.add(line.strip())
|
|
|
|
# Cache the set for future use
|
|
tgi_models_cache = tgi_models
|
|
|
|
# If not, read the file and populate the cache
|
|
file_path = os.path.join(
|
|
script_directory,
|
|
"huggingface_llms_metadata",
|
|
"hf_conversational_models.txt",
|
|
)
|
|
conv_models = set()
|
|
with open(file_path, "r") as file:
|
|
for line in file:
|
|
conv_models.add(line.strip())
|
|
# Cache the set for future use
|
|
conv_models_cache = conv_models
|
|
return tgi_models, conv_models
|
|
except Exception:
|
|
return set(), set()
|
|
|
|
|
|
def get_hf_task_for_model(model: str) -> Tuple[hf_tasks, str]:
|
|
# read text file, cast it to set
|
|
# read the file called "huggingface_llms_metadata/hf_text_generation_models.txt"
|
|
if model.split("/")[0] in hf_task_list:
|
|
split_model = model.split("/", 1)
|
|
return split_model[0], split_model[1] # type: ignore
|
|
tgi_models, conversational_models = read_tgi_conv_models()
|
|
if model in tgi_models:
|
|
return "text-generation-inference", model
|
|
elif model in conversational_models:
|
|
return "conversational", model
|
|
elif "roneneldan/TinyStories" in model:
|
|
return "text-generation", model
|
|
else:
|
|
return "text-generation-inference", model # default to tgi
|
|
|
|
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
|
|
|
|
def get_hf_task_embedding_for_model(
|
|
model: str, task_type: Optional[str], api_base: str
|
|
) -> Optional[str]:
|
|
if task_type is not None:
|
|
if task_type in get_args(hf_tasks_embeddings):
|
|
return task_type
|
|
else:
|
|
raise Exception(
|
|
"Invalid task_type={}. Expected one of={}".format(
|
|
task_type, hf_tasks_embeddings
|
|
)
|
|
)
|
|
http_client = HTTPHandler(concurrent_limit=1)
|
|
|
|
model_info = http_client.get(url=api_base)
|
|
|
|
model_info_dict = model_info.json()
|
|
|
|
pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)
|
|
|
|
return pipeline_tag
|
|
|
|
|
|
async def async_get_hf_task_embedding_for_model(
|
|
model: str, task_type: Optional[str], api_base: str
|
|
) -> Optional[str]:
|
|
if task_type is not None:
|
|
if task_type in get_args(hf_tasks_embeddings):
|
|
return task_type
|
|
else:
|
|
raise Exception(
|
|
"Invalid task_type={}. Expected one of={}".format(
|
|
task_type, hf_tasks_embeddings
|
|
)
|
|
)
|
|
http_client = AsyncHTTPHandler(concurrent_limit=1)
|
|
|
|
model_info = await http_client.get(url=api_base)
|
|
|
|
model_info_dict = model_info.json()
|
|
|
|
pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)
|
|
|
|
return pipeline_tag
|
|
|
|
|
|
class Huggingface(BaseLLM):
|
|
_client_session: Optional[httpx.Client] = None
|
|
_aclient_session: Optional[httpx.AsyncClient] = None
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def _validate_environment(self, api_key, headers) -> dict:
|
|
default_headers = {
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key and headers is None:
|
|
default_headers["Authorization"] = (
|
|
f"Bearer {api_key}" # Huggingface Inference Endpoint default is to accept bearer tokens
|
|
)
|
|
headers = default_headers
|
|
elif headers:
|
|
headers = headers
|
|
else:
|
|
headers = default_headers
|
|
return headers
|
|
|
|
def convert_to_model_response_object(
|
|
self,
|
|
completion_response,
|
|
model_response: litellm.ModelResponse,
|
|
task: hf_tasks,
|
|
optional_params,
|
|
encoding,
|
|
input_text,
|
|
model,
|
|
):
|
|
if task == "conversational":
|
|
if len(completion_response["generated_text"]) > 0: # type: ignore
|
|
model_response.choices[0].message.content = completion_response[ # type: ignore
|
|
"generated_text"
|
|
]
|
|
elif task == "text-generation-inference":
|
|
if (
|
|
not isinstance(completion_response, list)
|
|
or not isinstance(completion_response[0], dict)
|
|
or "generated_text" not in completion_response[0]
|
|
):
|
|
raise HuggingfaceError(
|
|
status_code=422,
|
|
message=f"response is not in expected format - {completion_response}",
|
|
)
|
|
|
|
if len(completion_response[0]["generated_text"]) > 0:
|
|
model_response.choices[0].message.content = output_parser( # type: ignore
|
|
completion_response[0]["generated_text"]
|
|
)
|
|
## GETTING LOGPROBS + FINISH REASON
|
|
if (
|
|
"details" in completion_response[0]
|
|
and "tokens" in completion_response[0]["details"]
|
|
):
|
|
model_response.choices[0].finish_reason = completion_response[0][
|
|
"details"
|
|
]["finish_reason"]
|
|
sum_logprob = 0
|
|
for token in completion_response[0]["details"]["tokens"]:
|
|
if token["logprob"] is not None:
|
|
sum_logprob += token["logprob"]
|
|
setattr(model_response.choices[0].message, "_logprob", sum_logprob) # type: ignore
|
|
if "best_of" in optional_params and optional_params["best_of"] > 1:
|
|
if (
|
|
"details" in completion_response[0]
|
|
and "best_of_sequences" in completion_response[0]["details"]
|
|
):
|
|
choices_list = []
|
|
for idx, item in enumerate(
|
|
completion_response[0]["details"]["best_of_sequences"]
|
|
):
|
|
sum_logprob = 0
|
|
for token in item["tokens"]:
|
|
if token["logprob"] is not None:
|
|
sum_logprob += token["logprob"]
|
|
if len(item["generated_text"]) > 0:
|
|
message_obj = Message(
|
|
content=output_parser(item["generated_text"]),
|
|
logprobs=sum_logprob,
|
|
)
|
|
else:
|
|
message_obj = Message(content=None)
|
|
choice_obj = Choices(
|
|
finish_reason=item["finish_reason"],
|
|
index=idx + 1,
|
|
message=message_obj,
|
|
)
|
|
choices_list.append(choice_obj)
|
|
model_response.choices.extend(choices_list)
|
|
elif task == "text-classification":
|
|
model_response.choices[0].message.content = json.dumps( # type: ignore
|
|
completion_response
|
|
)
|
|
else:
|
|
if len(completion_response[0]["generated_text"]) > 0:
|
|
model_response.choices[0].message.content = output_parser( # type: ignore
|
|
completion_response[0]["generated_text"]
|
|
)
|
|
## CALCULATING USAGE
|
|
prompt_tokens = 0
|
|
try:
|
|
prompt_tokens = len(
|
|
encoding.encode(input_text)
|
|
) ##[TODO] use the llama2 tokenizer here
|
|
except Exception:
|
|
# this should remain non blocking we should not block a response returning if calculating usage fails
|
|
pass
|
|
output_text = model_response["choices"][0]["message"].get("content", "")
|
|
if output_text is not None and len(output_text) > 0:
|
|
completion_tokens = 0
|
|
try:
|
|
completion_tokens = len(
|
|
encoding.encode(
|
|
model_response["choices"][0]["message"].get("content", "")
|
|
)
|
|
) ##[TODO] use the llama2 tokenizer here
|
|
except Exception:
|
|
# this should remain non blocking we should not block a response returning if calculating usage fails
|
|
pass
|
|
else:
|
|
completion_tokens = 0
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
model_response._hidden_params["original_response"] = completion_response
|
|
return model_response
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: Optional[str],
|
|
headers: Optional[dict],
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
timeout: float,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
custom_prompt_dict={},
|
|
acompletion: bool = False,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
super().completion()
|
|
exception_mapping_worked = False
|
|
try:
|
|
headers = self._validate_environment(api_key, headers)
|
|
task, model = get_hf_task_for_model(model)
|
|
## VALIDATE API FORMAT
|
|
if task is None or not isinstance(task, str) or task not in hf_task_list:
|
|
raise Exception(
|
|
"Invalid hf task - {}. Valid formats - {}.".format(task, hf_tasks)
|
|
)
|
|
|
|
print_verbose(f"{model}, {task}")
|
|
completion_url = ""
|
|
input_text = ""
|
|
if "https" in model:
|
|
completion_url = model
|
|
elif api_base:
|
|
completion_url = api_base
|
|
elif "HF_API_BASE" in os.environ:
|
|
completion_url = os.getenv("HF_API_BASE", "")
|
|
elif "HUGGINGFACE_API_BASE" in os.environ:
|
|
completion_url = os.getenv("HUGGINGFACE_API_BASE", "")
|
|
else:
|
|
completion_url = f"https://api-inference.huggingface.co/models/{model}"
|
|
|
|
## Load Config
|
|
config = litellm.HuggingfaceConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > huggingfaceConfig(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
### MAP INPUT PARAMS
|
|
#### HANDLE SPECIAL PARAMS
|
|
special_params = HuggingfaceConfig().get_special_options_params()
|
|
special_params_dict = {}
|
|
# Create a list of keys to pop after iteration
|
|
keys_to_pop = []
|
|
|
|
for k, v in optional_params.items():
|
|
if k in special_params:
|
|
special_params_dict[k] = v
|
|
keys_to_pop.append(k)
|
|
|
|
# Pop the keys from the dictionary after iteration
|
|
for k in keys_to_pop:
|
|
optional_params.pop(k)
|
|
if task == "conversational":
|
|
inference_params = copy.deepcopy(optional_params)
|
|
inference_params.pop("details")
|
|
inference_params.pop("return_full_text")
|
|
past_user_inputs = []
|
|
generated_responses = []
|
|
text = ""
|
|
for message in messages:
|
|
if message["role"] == "user":
|
|
if text != "":
|
|
past_user_inputs.append(text)
|
|
text = message["content"]
|
|
elif message["role"] == "assistant" or message["role"] == "system":
|
|
generated_responses.append(message["content"])
|
|
data = {
|
|
"inputs": {
|
|
"text": text,
|
|
"past_user_inputs": past_user_inputs,
|
|
"generated_responses": generated_responses,
|
|
},
|
|
"parameters": inference_params,
|
|
}
|
|
input_text = "".join(message["content"] for message in messages)
|
|
elif task == "text-generation-inference":
|
|
# always send "details" and "return_full_text" as params
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", None),
|
|
initial_prompt_value=model_prompt_details.get(
|
|
"initial_prompt_value", ""
|
|
),
|
|
final_prompt_value=model_prompt_details.get(
|
|
"final_prompt_value", ""
|
|
),
|
|
messages=messages,
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
data = {
|
|
"inputs": prompt, # type: ignore
|
|
"parameters": optional_params,
|
|
"stream": ( # type: ignore
|
|
True
|
|
if "stream" in optional_params
|
|
and isinstance(optional_params["stream"], bool)
|
|
and optional_params["stream"] is True # type: ignore
|
|
else False
|
|
),
|
|
}
|
|
input_text = prompt
|
|
else:
|
|
# Non TGI and Conversational llms
|
|
# We need this branch, it removes 'details' and 'return_full_text' from params
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", {}),
|
|
initial_prompt_value=model_prompt_details.get(
|
|
"initial_prompt_value", ""
|
|
),
|
|
final_prompt_value=model_prompt_details.get(
|
|
"final_prompt_value", ""
|
|
),
|
|
bos_token=model_prompt_details.get("bos_token", ""),
|
|
eos_token=model_prompt_details.get("eos_token", ""),
|
|
messages=messages,
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
inference_params = copy.deepcopy(optional_params)
|
|
inference_params.pop("details")
|
|
inference_params.pop("return_full_text")
|
|
data = {
|
|
"inputs": prompt, # type: ignore
|
|
}
|
|
if task == "text-generation-inference":
|
|
data["parameters"] = inference_params
|
|
data["stream"] = ( # type: ignore
|
|
True # type: ignore
|
|
if "stream" in optional_params
|
|
and optional_params["stream"] is True
|
|
else False
|
|
)
|
|
input_text = prompt
|
|
|
|
### RE-ADD SPECIAL PARAMS
|
|
if len(special_params_dict.keys()) > 0:
|
|
data.update({"options": special_params_dict})
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input_text,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"task": task,
|
|
"headers": headers,
|
|
"api_base": completion_url,
|
|
"acompletion": acompletion,
|
|
},
|
|
)
|
|
## COMPLETION CALL
|
|
|
|
# SSL certificates (a.k.a CA bundle) used to verify the identity of requested hosts.
|
|
ssl_verify = os.getenv("SSL_VERIFY", litellm.ssl_verify)
|
|
if ssl_verify in ["True", "False"]:
|
|
ssl_verify = bool(ssl_verify)
|
|
|
|
if acompletion is True:
|
|
### ASYNC STREAMING
|
|
if optional_params.get("stream", False):
|
|
return self.async_streaming(logging_obj=logging_obj, api_base=completion_url, data=data, headers=headers, model_response=model_response, model=model, timeout=timeout) # type: ignore
|
|
else:
|
|
### ASYNC COMPLETION
|
|
return self.acompletion(api_base=completion_url, data=data, headers=headers, model_response=model_response, task=task, encoding=encoding, input_text=input_text, model=model, optional_params=optional_params, timeout=timeout) # type: ignore
|
|
### SYNC STREAMING
|
|
if "stream" in optional_params and optional_params["stream"] is True:
|
|
response = requests.post(
|
|
completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
stream=optional_params["stream"],
|
|
verify=ssl_verify,
|
|
)
|
|
return response.iter_lines()
|
|
### SYNC COMPLETION
|
|
else:
|
|
response = requests.post(
|
|
completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
verify=ssl_verify,
|
|
)
|
|
|
|
## Some servers might return streaming responses even though stream was not set to true. (e.g. Baseten)
|
|
is_streamed = False
|
|
if (
|
|
response.__dict__["headers"].get("Content-Type", "")
|
|
== "text/event-stream"
|
|
):
|
|
is_streamed = True
|
|
|
|
# iterate over the complete streamed response, and return the final answer
|
|
if is_streamed:
|
|
streamed_response = CustomStreamWrapper(
|
|
completion_stream=response.iter_lines(),
|
|
model=model,
|
|
custom_llm_provider="huggingface",
|
|
logging_obj=logging_obj,
|
|
)
|
|
content = ""
|
|
for chunk in streamed_response:
|
|
content += chunk["choices"][0]["delta"]["content"]
|
|
completion_response: List[Dict[str, Any]] = [
|
|
{"generated_text": content}
|
|
]
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input_text,
|
|
api_key=api_key,
|
|
original_response=completion_response,
|
|
additional_args={"complete_input_dict": data, "task": task},
|
|
)
|
|
else:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input_text,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data, "task": task},
|
|
)
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = response.json()
|
|
if isinstance(completion_response, dict):
|
|
completion_response = [completion_response]
|
|
except Exception:
|
|
import traceback
|
|
|
|
raise HuggingfaceError(
|
|
message=f"Original Response received: {response.text}; Stacktrace: {traceback.format_exc()}",
|
|
status_code=response.status_code,
|
|
)
|
|
print_verbose(f"response: {completion_response}")
|
|
if (
|
|
isinstance(completion_response, dict)
|
|
and "error" in completion_response
|
|
):
|
|
print_verbose(f"completion error: {completion_response['error']}") # type: ignore
|
|
print_verbose(f"response.status_code: {response.status_code}")
|
|
raise HuggingfaceError(
|
|
message=completion_response["error"], # type: ignore
|
|
status_code=response.status_code,
|
|
)
|
|
return self.convert_to_model_response_object(
|
|
completion_response=completion_response,
|
|
model_response=model_response,
|
|
task=task,
|
|
optional_params=optional_params,
|
|
encoding=encoding,
|
|
input_text=input_text,
|
|
model=model,
|
|
)
|
|
except HuggingfaceError as e:
|
|
exception_mapping_worked = True
|
|
raise e
|
|
except Exception as e:
|
|
if exception_mapping_worked:
|
|
raise e
|
|
else:
|
|
import traceback
|
|
|
|
raise HuggingfaceError(status_code=500, message=traceback.format_exc())
|
|
|
|
async def acompletion(
|
|
self,
|
|
api_base: str,
|
|
data: dict,
|
|
headers: dict,
|
|
model_response: ModelResponse,
|
|
task: hf_tasks,
|
|
encoding: Any,
|
|
input_text: str,
|
|
model: str,
|
|
optional_params: dict,
|
|
timeout: float,
|
|
):
|
|
# SSL certificates (a.k.a CA bundle) used to verify the identity of requested hosts.
|
|
ssl_verify = os.getenv("SSL_VERIFY", litellm.ssl_verify)
|
|
|
|
response = None
|
|
try:
|
|
async with httpx.AsyncClient(timeout=timeout, verify=ssl_verify) as client:
|
|
response = await client.post(url=api_base, json=data, headers=headers)
|
|
response_json = response.json()
|
|
if response.status_code != 200:
|
|
if "error" in response_json:
|
|
raise HuggingfaceError(
|
|
status_code=response.status_code,
|
|
message=response_json["error"],
|
|
request=response.request,
|
|
response=response,
|
|
)
|
|
else:
|
|
raise HuggingfaceError(
|
|
status_code=response.status_code,
|
|
message=response.text,
|
|
request=response.request,
|
|
response=response,
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
return self.convert_to_model_response_object(
|
|
completion_response=response_json,
|
|
model_response=model_response,
|
|
task=task,
|
|
encoding=encoding,
|
|
input_text=input_text,
|
|
model=model,
|
|
optional_params=optional_params,
|
|
)
|
|
except Exception as e:
|
|
if isinstance(e, httpx.TimeoutException):
|
|
raise HuggingfaceError(status_code=500, message="Request Timeout Error")
|
|
elif isinstance(e, HuggingfaceError):
|
|
raise e
|
|
elif response is not None and hasattr(response, "text"):
|
|
raise HuggingfaceError(
|
|
status_code=500,
|
|
message=f"{str(e)}\n\nOriginal Response: {response.text}",
|
|
)
|
|
else:
|
|
raise HuggingfaceError(status_code=500, message=f"{str(e)}")
|
|
|
|
async def async_streaming(
|
|
self,
|
|
logging_obj,
|
|
api_base: str,
|
|
data: dict,
|
|
headers: dict,
|
|
model_response: ModelResponse,
|
|
model: str,
|
|
timeout: float,
|
|
):
|
|
# SSL certificates (a.k.a CA bundle) used to verify the identity of requested hosts.
|
|
ssl_verify = os.getenv("SSL_VERIFY", litellm.ssl_verify)
|
|
|
|
async with httpx.AsyncClient(timeout=timeout, verify=ssl_verify) as client:
|
|
response = client.stream(
|
|
"POST", url=f"{api_base}", json=data, headers=headers
|
|
)
|
|
async with response as r:
|
|
if r.status_code != 200:
|
|
text = await r.aread()
|
|
raise HuggingfaceError(
|
|
status_code=r.status_code,
|
|
message=str(text),
|
|
)
|
|
"""
|
|
Check first chunk for error message.
|
|
If error message, raise error.
|
|
If not - add back to stream
|
|
"""
|
|
# Async iterator over the lines in the response body
|
|
response_iterator = r.aiter_lines()
|
|
|
|
# Attempt to get the first line/chunk from the response
|
|
try:
|
|
first_chunk = await response_iterator.__anext__()
|
|
except StopAsyncIteration:
|
|
# Handle the case where there are no lines to read (empty response)
|
|
first_chunk = ""
|
|
|
|
# Check the first chunk for an error message
|
|
if (
|
|
"error" in first_chunk.lower()
|
|
): # Adjust this condition based on how error messages are structured
|
|
raise HuggingfaceError(
|
|
status_code=400,
|
|
message=first_chunk,
|
|
)
|
|
|
|
# Create a new async generator that begins with the first_chunk and includes the remaining items
|
|
async def custom_stream_with_first_chunk():
|
|
yield first_chunk # Yield back the first chunk
|
|
async for (
|
|
chunk
|
|
) in response_iterator: # Continue yielding the rest of the chunks
|
|
yield chunk
|
|
|
|
# Creating a new completion stream that starts with the first chunk
|
|
completion_stream = custom_stream_with_first_chunk()
|
|
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider="huggingface",
|
|
logging_obj=logging_obj,
|
|
)
|
|
|
|
async for transformed_chunk in streamwrapper:
|
|
yield transformed_chunk
|
|
|
|
def _transform_input_on_pipeline_tag(
|
|
self, input: List, pipeline_tag: Optional[str]
|
|
) -> dict:
|
|
if pipeline_tag is None:
|
|
return {"inputs": input}
|
|
if pipeline_tag == "sentence-similarity" or pipeline_tag == "similarity":
|
|
if len(input) < 2:
|
|
raise HuggingfaceError(
|
|
status_code=400,
|
|
message="sentence-similarity requires 2+ sentences",
|
|
)
|
|
return {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
|
|
elif pipeline_tag == "rerank":
|
|
if len(input) < 2:
|
|
raise HuggingfaceError(
|
|
status_code=400,
|
|
message="reranker requires 2+ sentences",
|
|
)
|
|
return {"inputs": {"query": input[0], "texts": input[1:]}}
|
|
return {"inputs": input} # default to feature-extraction pipeline tag
|
|
|
|
async def _async_transform_input(
|
|
self,
|
|
model: str,
|
|
task_type: Optional[str],
|
|
embed_url: str,
|
|
input: List,
|
|
optional_params: dict,
|
|
) -> dict:
|
|
hf_task = await async_get_hf_task_embedding_for_model(
|
|
model=model, task_type=task_type, api_base=embed_url
|
|
)
|
|
|
|
data = self._transform_input_on_pipeline_tag(input=input, pipeline_tag=hf_task)
|
|
|
|
if len(optional_params.keys()) > 0:
|
|
data["options"] = optional_params
|
|
|
|
return data
|
|
|
|
def _process_optional_params(self, data: dict, optional_params: dict) -> dict:
|
|
special_options_keys = HuggingfaceConfig().get_special_options_params()
|
|
special_parameters_keys = [
|
|
"min_length",
|
|
"max_length",
|
|
"top_k",
|
|
"top_p",
|
|
"temperature",
|
|
"repetition_penalty",
|
|
"max_time",
|
|
]
|
|
|
|
for k, v in optional_params.items():
|
|
if k in special_options_keys:
|
|
data.setdefault("options", {})
|
|
data["options"][k] = v
|
|
elif k in special_parameters_keys:
|
|
data.setdefault("parameters", {})
|
|
data["parameters"][k] = v
|
|
else:
|
|
data[k] = v
|
|
|
|
return data
|
|
|
|
def _transform_input(
|
|
self,
|
|
input: List,
|
|
model: str,
|
|
call_type: Literal["sync", "async"],
|
|
optional_params: dict,
|
|
embed_url: str,
|
|
) -> dict:
|
|
data: Dict = {}
|
|
## TRANSFORMATION ##
|
|
if "sentence-transformers" in model:
|
|
if len(input) == 0:
|
|
raise HuggingfaceError(
|
|
status_code=400,
|
|
message="sentence transformers requires 2+ sentences",
|
|
)
|
|
data = {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
|
|
else:
|
|
data = {"inputs": input}
|
|
|
|
task_type = optional_params.pop("input_type", None)
|
|
|
|
if call_type == "sync":
|
|
hf_task = get_hf_task_embedding_for_model(
|
|
model=model, task_type=task_type, api_base=embed_url
|
|
)
|
|
elif call_type == "async":
|
|
return self._async_transform_input(
|
|
model=model, task_type=task_type, embed_url=embed_url, input=input
|
|
) # type: ignore
|
|
|
|
data = self._transform_input_on_pipeline_tag(
|
|
input=input, pipeline_tag=hf_task
|
|
)
|
|
|
|
if len(optional_params.keys()) > 0:
|
|
data = self._process_optional_params(
|
|
data=data, optional_params=optional_params
|
|
)
|
|
|
|
return data
|
|
|
|
def _process_embedding_response(
|
|
self,
|
|
embeddings: dict,
|
|
model_response: litellm.EmbeddingResponse,
|
|
model: str,
|
|
input: List,
|
|
encoding: Any,
|
|
) -> litellm.EmbeddingResponse:
|
|
output_data = []
|
|
if "similarities" in embeddings:
|
|
for idx, embedding in embeddings["similarities"]:
|
|
output_data.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding, # flatten list returned from hf
|
|
}
|
|
)
|
|
else:
|
|
for idx, embedding in enumerate(embeddings):
|
|
if isinstance(embedding, float):
|
|
output_data.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding, # flatten list returned from hf
|
|
}
|
|
)
|
|
elif isinstance(embedding, list) and isinstance(embedding[0], float):
|
|
output_data.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding, # flatten list returned from hf
|
|
}
|
|
)
|
|
else:
|
|
output_data.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding[0][
|
|
0
|
|
], # flatten list returned from hf
|
|
}
|
|
)
|
|
model_response.object = "list"
|
|
model_response.data = output_data
|
|
model_response.model = model
|
|
input_tokens = 0
|
|
for text in input:
|
|
input_tokens += len(encoding.encode(text))
|
|
|
|
setattr(
|
|
model_response,
|
|
"usage",
|
|
litellm.Usage(
|
|
prompt_tokens=input_tokens,
|
|
completion_tokens=input_tokens,
|
|
total_tokens=input_tokens,
|
|
prompt_tokens_details=None,
|
|
completion_tokens_details=None,
|
|
),
|
|
)
|
|
return model_response
|
|
|
|
async def aembedding(
|
|
self,
|
|
model: str,
|
|
input: list,
|
|
model_response: litellm.utils.EmbeddingResponse,
|
|
timeout: Union[float, httpx.Timeout],
|
|
logging_obj: LiteLLMLoggingObj,
|
|
optional_params: dict,
|
|
api_base: str,
|
|
api_key: Optional[str],
|
|
headers: dict,
|
|
encoding: Callable,
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
):
|
|
## TRANSFORMATION ##
|
|
data = self._transform_input(
|
|
input=input,
|
|
model=model,
|
|
call_type="sync",
|
|
optional_params=optional_params,
|
|
embed_url=api_base,
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"headers": headers,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
## COMPLETION CALL
|
|
if client is None:
|
|
client = AsyncHTTPHandler(concurrent_limit=1)
|
|
|
|
response = await client.post(api_base, headers=headers, data=json.dumps(data))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response,
|
|
)
|
|
|
|
embeddings = response.json()
|
|
|
|
if "error" in embeddings:
|
|
raise HuggingfaceError(status_code=500, message=embeddings["error"])
|
|
|
|
## PROCESS RESPONSE ##
|
|
return self._process_embedding_response(
|
|
embeddings=embeddings,
|
|
model_response=model_response,
|
|
model=model,
|
|
input=input,
|
|
encoding=encoding,
|
|
)
|
|
|
|
def embedding(
|
|
self,
|
|
model: str,
|
|
input: list,
|
|
model_response: litellm.EmbeddingResponse,
|
|
optional_params: dict,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
encoding: Callable,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
timeout: Union[float, httpx.Timeout] = httpx.Timeout(None),
|
|
aembedding: Optional[bool] = None,
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
) -> litellm.EmbeddingResponse:
|
|
super().embedding()
|
|
headers = self._validate_environment(api_key, headers=None)
|
|
# print_verbose(f"{model}, {task}")
|
|
embed_url = ""
|
|
if "https" in model:
|
|
embed_url = model
|
|
elif api_base:
|
|
embed_url = api_base
|
|
elif "HF_API_BASE" in os.environ:
|
|
embed_url = os.getenv("HF_API_BASE", "")
|
|
elif "HUGGINGFACE_API_BASE" in os.environ:
|
|
embed_url = os.getenv("HUGGINGFACE_API_BASE", "")
|
|
else:
|
|
embed_url = f"https://api-inference.huggingface.co/models/{model}"
|
|
|
|
## ROUTING ##
|
|
if aembedding is True:
|
|
return self.aembedding(
|
|
input=input,
|
|
model_response=model_response,
|
|
timeout=timeout,
|
|
logging_obj=logging_obj,
|
|
headers=headers,
|
|
api_base=embed_url, # type: ignore
|
|
api_key=api_key,
|
|
client=client if isinstance(client, AsyncHTTPHandler) else None,
|
|
model=model,
|
|
optional_params=optional_params,
|
|
encoding=encoding,
|
|
)
|
|
|
|
## TRANSFORMATION ##
|
|
|
|
data = self._transform_input(
|
|
input=input,
|
|
model=model,
|
|
call_type="sync",
|
|
optional_params=optional_params,
|
|
embed_url=embed_url,
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"headers": headers,
|
|
"api_base": embed_url,
|
|
},
|
|
)
|
|
## COMPLETION CALL
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = HTTPHandler(concurrent_limit=1)
|
|
response = client.post(embed_url, headers=headers, data=json.dumps(data))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response,
|
|
)
|
|
|
|
embeddings = response.json()
|
|
|
|
if "error" in embeddings:
|
|
raise HuggingfaceError(status_code=500, message=embeddings["error"])
|
|
|
|
## PROCESS RESPONSE ##
|
|
return self._process_embedding_response(
|
|
embeddings=embeddings,
|
|
model_response=model_response,
|
|
model=model,
|
|
input=input,
|
|
encoding=encoding,
|
|
)
|