mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
104 lines
6.1 KiB
Python
104 lines
6.1 KiB
Python
#### What this does ####
|
|
# On success + failure, log events to Supabase
|
|
|
|
import dotenv, os
|
|
import requests
|
|
dotenv.load_dotenv() # Loading env variables using dotenv
|
|
import traceback
|
|
import datetime, subprocess, sys
|
|
|
|
model_cost = {
|
|
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
|
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
|
|
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
|
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
|
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
|
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
|
|
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
|
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
|
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
|
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
|
|
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
|
|
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
|
|
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
|
|
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
|
|
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
|
|
}
|
|
|
|
class Supabase:
|
|
# Class variables or attributes
|
|
supabase_table_name = "request_logs"
|
|
def __init__(self):
|
|
# Instance variables
|
|
self.supabase_url = os.getenv("SUPABASE_URL")
|
|
self.supabase_key = os.getenv("SUPABASE_KEY")
|
|
try:
|
|
import supabase
|
|
except ImportError:
|
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'supabase'])
|
|
import supabase
|
|
self.supabase_client = supabase.create_client(self.supabase_url, self.supabase_key)
|
|
|
|
def price_calculator(self, model, response_obj, start_time, end_time):
|
|
# try and find if the model is in the model_cost map
|
|
# else default to the average of the costs
|
|
prompt_tokens_cost_usd_dollar = 0
|
|
completion_tokens_cost_usd_dollar = 0
|
|
if model in model_cost:
|
|
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
|
|
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
|
|
elif "replicate" in model:
|
|
# replicate models are charged based on time
|
|
# llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
|
|
model_run_time = end_time - start_time # assuming time in seconds
|
|
cost_usd_dollar = model_run_time * 0.0032
|
|
prompt_tokens_cost_usd_dollar = cost_usd_dollar / 2
|
|
completion_tokens_cost_usd_dollar = cost_usd_dollar / 2
|
|
else:
|
|
# calculate average input cost
|
|
input_cost_sum = 0
|
|
output_cost_sum = 0
|
|
for model in model_cost:
|
|
input_cost_sum += model_cost[model]["input_cost_per_token"]
|
|
output_cost_sum += model_cost[model]["output_cost_per_token"]
|
|
avg_input_cost = input_cost_sum / len(model_cost.keys())
|
|
avg_output_cost = output_cost_sum / len(model_cost.keys())
|
|
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
|
|
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
|
|
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
|
|
|
def log_event(self, model, messages, end_user, response_obj, start_time, end_time, print_verbose):
|
|
try:
|
|
print_verbose(f"Supabase Logging - Enters logging function for model {model}, response_obj: {response_obj}")
|
|
|
|
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = self.price_calculator(model, response_obj, start_time, end_time)
|
|
total_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
|
|
|
|
response_time = (end_time-start_time).total_seconds()
|
|
if "choices" in response_obj:
|
|
supabase_data_obj = {
|
|
"response_time": response_time,
|
|
"model": response_obj["model"],
|
|
"total_cost": total_cost,
|
|
"messages": messages,
|
|
"response": response_obj['choices'][0]['message']['content'],
|
|
"end_user": end_user
|
|
}
|
|
print_verbose(f"Supabase Logging - final data object: {supabase_data_obj}")
|
|
data, count = self.supabase_client.table(self.supabase_table_name).insert(supabase_data_obj).execute()
|
|
elif "error" in response_obj:
|
|
supabase_data_obj = {
|
|
"response_time": response_time,
|
|
"model": response_obj["model"],
|
|
"total_cost": total_cost,
|
|
"messages": messages,
|
|
"error": response_obj['error'],
|
|
"end_user": end_user
|
|
}
|
|
print_verbose(f"Supabase Logging - final data object: {supabase_data_obj}")
|
|
data, count = self.supabase_client.table(self.supabase_table_name).insert(supabase_data_obj).execute()
|
|
|
|
except:
|
|
# traceback.print_exc()
|
|
print_verbose(f"Supabase Logging Error - {traceback.format_exc()}")
|
|
pass
|