mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
* fix(custom_logger.py): expose new 'async_get_chat_completion_prompt' event hook * fix(custom_logger.py): langfuse_prompt_management.py remove 'headers' from custom logger 'async_get_chat_completion_prompt' and 'get_chat_completion_prompt' event hooks * feat(router.py): expose new function for prompt management based routing * feat(router.py): partial working router prompt factory logic allows load balanced model to be used for model name w/ langfuse prompt management call * feat(router.py): fix prompt management with load balanced model group * feat(langfuse_prompt_management.py): support reading in openai params from langfuse enables user to define optional params on langfuse vs. client code * test(test_Router.py): add unit test for router based langfuse prompt management * fix: fix linting errors |
||
---|---|---|
.. | ||
audio_utils | ||
llm_cost_calc | ||
llm_response_utils | ||
prompt_templates | ||
specialty_caches | ||
tokenizers | ||
asyncify.py | ||
core_helpers.py | ||
default_encoding.py | ||
duration_parser.py | ||
exception_mapping_utils.py | ||
get_llm_provider_logic.py | ||
get_supported_openai_params.py | ||
health_check_utils.py | ||
initialize_dynamic_callback_params.py | ||
json_validation_rule.py | ||
litellm_logging.py | ||
llm_request_utils.py | ||
logging_utils.py | ||
mock_functions.py | ||
README.md | ||
realtime_streaming.py | ||
redact_messages.py | ||
response_header_helpers.py | ||
rules.py | ||
streaming_chunk_builder_utils.py | ||
streaming_handler.py | ||
token_counter.py |
Folder Contents
This folder contains general-purpose utilities that are used in multiple places in the codebase.
Core files:
streaming_handler.py
: The core streaming logic + streaming related helper utilscore_helpers.py
: code used intypes/
- e.g.map_finish_reason
.exception_mapping_utils.py
: utils for mapping exceptions to openai-compatible error types.default_encoding.py
: code for loading the default encoding (tiktoken)get_llm_provider_logic.py
: code for inferring the LLM provider from a given model name.duration_parser.py
: code for parsing durations - e.g. "1d", "1mo", "10s"