forked from phoenix/litellm-mirror
(feat) predict spend
This commit is contained in:
parent
47c5b94c50
commit
03a0b274f7
4 changed files with 90 additions and 27 deletions
|
@ -251,27 +251,30 @@ def _forecast_daily_cost(data: list):
|
|||
import requests
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
# Get the last entry in the data
|
||||
first_entry = data[0]
|
||||
last_entry = data[-1]
|
||||
|
||||
# Parse the date from the last entry
|
||||
last_entry_date = datetime.strptime(last_entry["date"], "%Y-%m-%d").date()
|
||||
# print("Last Entry Date:", last_entry_date)
|
||||
# get the date today
|
||||
today_date = datetime.today().date()
|
||||
|
||||
# Get the month of the last entry
|
||||
last_entry_month = last_entry_date.month
|
||||
# print("Last Entry Month:", last_entry_month)
|
||||
today_day_month = today_date.month
|
||||
|
||||
# Parse the date from the first entry
|
||||
first_entry_date = datetime.strptime(first_entry["date"], "%Y-%m-%d").date()
|
||||
last_entry_date = datetime.strptime(last_entry["date"], "%Y-%m-%d")
|
||||
|
||||
print("last entry date", last_entry_date)
|
||||
|
||||
# Assuming today_date is a datetime object
|
||||
today_date = datetime.now()
|
||||
|
||||
# Calculate the last day of the month
|
||||
last_day_of_month = (
|
||||
datetime(last_entry_date.year, last_entry_date.month % 12 + 1, 1)
|
||||
- timedelta(days=1)
|
||||
).day
|
||||
# print("Last Day of Month:", last_day_of_month)
|
||||
last_day_of_todays_month = datetime(
|
||||
today_date.year, today_date.month % 12 + 1, 1
|
||||
) - timedelta(days=1)
|
||||
|
||||
# Calculate the remaining days in the month
|
||||
remaining_days = last_day_of_month - last_entry_date.day
|
||||
# print("Remaining Days:", remaining_days)
|
||||
remaining_days = (last_day_of_todays_month - last_entry_date).days + 1
|
||||
|
||||
series = {}
|
||||
for entry in data:
|
||||
|
@ -279,6 +282,17 @@ def _forecast_daily_cost(data: list):
|
|||
spend = entry["spend"]
|
||||
series[date] = spend
|
||||
|
||||
if len(series) < 10:
|
||||
num_items_to_fill = 11 - len(series)
|
||||
|
||||
# avg spend for all days in series
|
||||
avg_spend = sum(series.values()) / len(series)
|
||||
for i in range(num_items_to_fill):
|
||||
# go backwards from the first entry
|
||||
date = first_entry_date - timedelta(days=i)
|
||||
series[date.strftime("%Y-%m-%d")] = avg_spend
|
||||
series[date.strftime("%Y-%m-%d")] = avg_spend
|
||||
|
||||
payload = {"series": series, "count": remaining_days}
|
||||
print("Prediction Data:", payload)
|
||||
|
||||
|
@ -291,6 +305,8 @@ def _forecast_daily_cost(data: list):
|
|||
json=payload,
|
||||
headers=headers,
|
||||
)
|
||||
# check the status code
|
||||
response.raise_for_status()
|
||||
|
||||
json_response = response.json()
|
||||
forecast_data = json_response["forecast"]
|
||||
|
@ -314,15 +330,6 @@ def _forecast_daily_cost(data: list):
|
|||
# _forecast_daily_cost(
|
||||
# [
|
||||
# {"date": "2022-01-01", "spend": 100},
|
||||
# {"date": "2022-01-02", "spend": 200},
|
||||
# {"date": "2022-01-03", "spend": 300},
|
||||
# {"date": "2022-01-04", "spend": 400},
|
||||
# {"date": "2022-01-05", "spend": 500},
|
||||
# {"date": "2022-01-06", "spend": 600},
|
||||
# {"date": "2022-01-07", "spend": 700},
|
||||
# {"date": "2022-01-08", "spend": 800},
|
||||
# {"date": "2022-01-09", "spend": 900},
|
||||
# {"date": "2022-01-10", "spend": 1000},
|
||||
# {"date": "2022-01-11", "spend": 50},
|
||||
|
||||
# ]
|
||||
# )
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue