forked from phoenix/litellm-mirror
(fix - watsonx) Fixed issues with watsonx embedding/async endpoints
This commit is contained in:
parent
c7338f9798
commit
06e6f52358
2 changed files with 186 additions and 119 deletions
|
@ -1,5 +1,6 @@
|
|||
from enum import Enum
|
||||
import json, types, time # noqa: E401
|
||||
import asyncio
|
||||
from contextlib import asynccontextmanager, contextmanager
|
||||
from typing import (
|
||||
Callable,
|
||||
|
@ -393,6 +394,35 @@ class IBMWatsonXAI(BaseLLM):
|
|||
"api_version": api_version,
|
||||
}
|
||||
|
||||
def _process_text_gen_response(
|
||||
self, json_resp: dict, model_response: Union[ModelResponse, None] = None
|
||||
) -> ModelResponse:
|
||||
if "results" not in json_resp:
|
||||
raise WatsonXAIError(
|
||||
status_code=500,
|
||||
message=f"Error: Invalid response from Watsonx.ai API: {json_resp}",
|
||||
)
|
||||
if model_response is None:
|
||||
model_response = ModelResponse(model=json_resp.get("model_id", None))
|
||||
generated_text = json_resp["results"][0]["generated_text"]
|
||||
prompt_tokens = json_resp["results"][0]["input_token_count"]
|
||||
completion_tokens = json_resp["results"][0]["generated_token_count"]
|
||||
model_response["choices"][0]["message"]["content"] = generated_text
|
||||
model_response["finish_reason"] = json_resp["results"][0]["stop_reason"]
|
||||
if json_resp.get("created_at"):
|
||||
model_response["created"] = datetime.fromisoformat(
|
||||
json_resp["created_at"]
|
||||
).timestamp()
|
||||
else:
|
||||
model_response["created"] = int(time.time())
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -531,6 +561,29 @@ class IBMWatsonXAI(BaseLLM):
|
|||
except Exception as e:
|
||||
raise WatsonXAIError(status_code=500, message=str(e))
|
||||
|
||||
def _process_embedding_response(self, json_resp: dict, model_response:Union[ModelResponse,None]=None) -> ModelResponse:
|
||||
if model_response is None:
|
||||
model_response = ModelResponse(model=json_resp.get("model_id", None))
|
||||
results = json_resp.get("results", [])
|
||||
embedding_response = []
|
||||
for idx, result in enumerate(results):
|
||||
embedding_response.append(
|
||||
{
|
||||
"object": "embedding",
|
||||
"index": idx,
|
||||
"embedding": result["embedding"],
|
||||
}
|
||||
)
|
||||
model_response["object"] = "list"
|
||||
model_response["data"] = embedding_response
|
||||
input_tokens = json_resp.get("input_token_count", 0)
|
||||
model_response.usage = Usage(
|
||||
prompt_tokens=input_tokens,
|
||||
completion_tokens=0,
|
||||
total_tokens=input_tokens,
|
||||
)
|
||||
return model_response
|
||||
|
||||
def embedding(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -672,10 +725,10 @@ class RequestManager:
|
|||
```python
|
||||
request_params = dict(method="POST", url="https://api.example.com", headers={"Authorization" : "Bearer token"}, json={"key": "value"})
|
||||
request_manager = RequestManager(logging_obj=logging_obj)
|
||||
async with request_manager.request(request_params) as resp:
|
||||
with request_manager.request(request_params) as resp:
|
||||
...
|
||||
# or
|
||||
with request_manager.async_request(request_params) as resp:
|
||||
async with request_manager.async_request(request_params) as resp:
|
||||
...
|
||||
```
|
||||
"""
|
||||
|
@ -687,11 +740,12 @@ class RequestManager:
|
|||
self,
|
||||
request_params: dict,
|
||||
input: Optional[Any] = None,
|
||||
is_async: Optional[bool] = False,
|
||||
):
|
||||
if self.logging_obj is None:
|
||||
return
|
||||
request_str = (
|
||||
f"response = {request_params['method']}(\n"
|
||||
f"response = {'await ' if is_async else ''}{request_params['method']}(\n"
|
||||
f"\turl={request_params['url']},\n"
|
||||
f"\tjson={request_params.get('json')},\n"
|
||||
f")"
|
||||
|
@ -749,7 +803,6 @@ class RequestManager:
|
|||
if not stream:
|
||||
self.post_call(resp, request_params)
|
||||
|
||||
@asynccontextmanager
|
||||
async def async_request(
|
||||
self,
|
||||
request_params: dict,
|
||||
|
@ -757,27 +810,34 @@ class RequestManager:
|
|||
input: Optional[Any] = None,
|
||||
timeout=None,
|
||||
) -> AsyncGenerator[httpx.Response, None]:
|
||||
self.pre_call(request_params, input)
|
||||
self.pre_call(request_params, input, is_async=True)
|
||||
if timeout:
|
||||
request_params["timeout"] = timeout
|
||||
if stream:
|
||||
request_params["stream"] = stream
|
||||
try:
|
||||
# async with AsyncHTTPHandler(timeout=timeout) as client:
|
||||
self.async_handler = AsyncHTTPHandler(
|
||||
timeout=httpx.Timeout(
|
||||
timeout=request_params.pop("timeout", 600.0), connect=5.0
|
||||
),
|
||||
)
|
||||
# async_handler.client.verify = False
|
||||
if "json" in request_params:
|
||||
request_params["data"] = json.dumps(request_params.pop("json", {}))
|
||||
method = request_params.pop("method")
|
||||
retries = 0
|
||||
while retries < 3:
|
||||
if method.upper() == "POST":
|
||||
resp = await self.async_handler.post(**request_params)
|
||||
else:
|
||||
resp = await self.async_handler.get(**request_params)
|
||||
if resp.status_code not in [200, 201]:
|
||||
if resp.status_code in [429, 503, 504, 520]:
|
||||
# to handle rate limiting and service unavailable errors
|
||||
# see: ibm_watsonx_ai.foundation_models.inference.base_model_inference.BaseModelInference._send_inference_payload
|
||||
await asyncio.sleep(2**retries)
|
||||
retries += 1
|
||||
else:
|
||||
break
|
||||
if resp.is_error:
|
||||
raise WatsonXAIError(
|
||||
status_code=resp.status_code,
|
||||
message=f"Error {resp.status_code} ({resp.reason}): {resp.text}",
|
||||
|
@ -785,6 +845,7 @@ class RequestManager:
|
|||
yield resp
|
||||
# await async_handler.close()
|
||||
except Exception as e:
|
||||
raise e
|
||||
raise WatsonXAIError(status_code=500, message=str(e))
|
||||
if not stream:
|
||||
self.post_call(resp, request_params)
|
|
@ -108,6 +108,7 @@ from .llms.databricks import DatabricksChatCompletion
|
|||
from .llms.huggingface_restapi import Huggingface
|
||||
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
||||
from .llms.predibase import PredibaseChatCompletion
|
||||
from .llms.watsonx import IBMWatsonXAI
|
||||
from .llms.prompt_templates.factory import (
|
||||
custom_prompt,
|
||||
function_call_prompt,
|
||||
|
@ -152,6 +153,7 @@ triton_chat_completions = TritonChatCompletion()
|
|||
bedrock_chat_completion = BedrockLLM()
|
||||
bedrock_converse_chat_completion = BedrockConverseLLM()
|
||||
vertex_chat_completion = VertexLLM()
|
||||
watsonxai = IBMWatsonXAI()
|
||||
####### COMPLETION ENDPOINTS ################
|
||||
|
||||
|
||||
|
@ -369,6 +371,7 @@ async def acompletion(
|
|||
or custom_llm_provider == "bedrock"
|
||||
or custom_llm_provider == "databricks"
|
||||
or custom_llm_provider == "clarifai"
|
||||
or custom_llm_provider == "watsonx"
|
||||
or custom_llm_provider in litellm.openai_compatible_providers
|
||||
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
|
@ -2352,7 +2355,7 @@ def completion(
|
|||
response = response
|
||||
elif custom_llm_provider == "watsonx":
|
||||
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
|
||||
response = watsonx.IBMWatsonXAI().completion(
|
||||
response = watsonxai.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
|
@ -2364,6 +2367,7 @@ def completion(
|
|||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
timeout=timeout, # type: ignore
|
||||
acompletion=acompletion,
|
||||
)
|
||||
if (
|
||||
"stream" in optional_params
|
||||
|
@ -3030,6 +3034,7 @@ async def aembedding(*args, **kwargs) -> EmbeddingResponse:
|
|||
or custom_llm_provider == "ollama"
|
||||
or custom_llm_provider == "vertex_ai"
|
||||
or custom_llm_provider == "databricks"
|
||||
or custom_llm_provider == "watsonx"
|
||||
): # currently implemented aiohttp calls for just azure and openai, soon all.
|
||||
# Await normally
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
|
@ -3537,13 +3542,14 @@ def embedding(
|
|||
aembedding=aembedding,
|
||||
)
|
||||
elif custom_llm_provider == "watsonx":
|
||||
response = watsonx.IBMWatsonXAI().embedding(
|
||||
response = watsonxai.embedding(
|
||||
model=model,
|
||||
input=input,
|
||||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
optional_params=optional_params,
|
||||
model_response=EmbeddingResponse(),
|
||||
aembedding=aembedding,
|
||||
)
|
||||
else:
|
||||
args = locals()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue