forked from phoenix/litellm-mirror
fix(vertex_ai.py): support optional params + enable async calls for gemini
This commit is contained in:
parent
625df3c256
commit
07015843ac
5 changed files with 94 additions and 24 deletions
BIN
dist/litellm-1.14.0.dev1-py3-none-any.whl
vendored
Normal file
BIN
dist/litellm-1.14.0.dev1-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
dist/litellm-1.14.0.dev1.tar.gz
vendored
Normal file
BIN
dist/litellm-1.14.0.dev1.tar.gz
vendored
Normal file
Binary file not shown.
|
@ -69,6 +69,7 @@ def completion(
|
||||||
optional_params=None,
|
optional_params=None,
|
||||||
litellm_params=None,
|
litellm_params=None,
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
|
acompletion: bool=False
|
||||||
):
|
):
|
||||||
try:
|
try:
|
||||||
import vertexai
|
import vertexai
|
||||||
|
@ -77,7 +78,7 @@ def completion(
|
||||||
try:
|
try:
|
||||||
from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair
|
from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair
|
||||||
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
||||||
from vertexai.preview.generative_models import GenerativeModel, Part
|
from vertexai.preview.generative_models import GenerativeModel, Part, GenerationConfig
|
||||||
|
|
||||||
|
|
||||||
vertexai.init(
|
vertexai.init(
|
||||||
|
@ -99,13 +100,13 @@ def completion(
|
||||||
request_str = ""
|
request_str = ""
|
||||||
response_obj = None
|
response_obj = None
|
||||||
if model in litellm.vertex_language_models:
|
if model in litellm.vertex_language_models:
|
||||||
chat_model = GenerativeModel(model)
|
llm_model = GenerativeModel(model)
|
||||||
mode = ""
|
mode = ""
|
||||||
request_str += f"chat_model = GenerativeModel({model})\n"
|
request_str += f"llm_model = GenerativeModel({model})\n"
|
||||||
elif model in litellm.vertex_chat_models:
|
elif model in litellm.vertex_chat_models:
|
||||||
chat_model = ChatModel.from_pretrained(model)
|
llm_model = ChatModel.from_pretrained(model)
|
||||||
mode = "chat"
|
mode = "chat"
|
||||||
request_str += f"chat_model = ChatModel.from_pretrained({model})\n"
|
request_str += f"llm_model = ChatModel.from_pretrained({model})\n"
|
||||||
elif model in litellm.vertex_text_models:
|
elif model in litellm.vertex_text_models:
|
||||||
text_model = TextGenerationModel.from_pretrained(model)
|
text_model = TextGenerationModel.from_pretrained(model)
|
||||||
mode = "text"
|
mode = "text"
|
||||||
|
@ -114,34 +115,38 @@ def completion(
|
||||||
text_model = CodeGenerationModel.from_pretrained(model)
|
text_model = CodeGenerationModel.from_pretrained(model)
|
||||||
mode = "text"
|
mode = "text"
|
||||||
request_str += f"text_model = CodeGenerationModel.from_pretrained({model})\n"
|
request_str += f"text_model = CodeGenerationModel.from_pretrained({model})\n"
|
||||||
else: # vertex_code_chat_models
|
else: # vertex_code_llm_models
|
||||||
chat_model = CodeChatModel.from_pretrained(model)
|
llm_model = CodeChatModel.from_pretrained(model)
|
||||||
mode = "chat"
|
mode = "chat"
|
||||||
request_str += f"chat_model = CodeChatModel.from_pretrained({model})\n"
|
request_str += f"llm_model = CodeChatModel.from_pretrained({model})\n"
|
||||||
|
|
||||||
|
if acompletion == True and model in litellm.vertex_language_models: # [TODO] expand support to vertex ai chat + text models
|
||||||
|
if optional_params.get("stream", False) is True:
|
||||||
|
# async streaming
|
||||||
|
pass
|
||||||
|
return async_completion(llm_model=llm_model, mode=mode, prompt=prompt, logging_obj=logging_obj, request_str=request_str, model=model, model_response=model_response, **optional_params)
|
||||||
|
|
||||||
if mode == "":
|
if mode == "":
|
||||||
chat = chat_model.start_chat()
|
chat = llm_model.start_chat()
|
||||||
request_str+= f"chat = chat_model.start_chat()\n"
|
request_str+= f"chat = llm_model.start_chat()\n"
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
request_str += f"chat.send_message_streaming({prompt}, **{optional_params})\n"
|
request_str += f"chat.send_message_streaming({prompt}, **{optional_params})\n"
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||||
model_response = chat.send_message(prompt, **optional_params)
|
model_response = chat.send_message(prompt, generation_config=GenerationConfig(**optional_params))
|
||||||
optional_params["stream"] = True
|
optional_params["stream"] = True
|
||||||
return model_response
|
return model_response
|
||||||
|
|
||||||
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
|
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
|
||||||
|
## LOGGING
|
||||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||||
response_obj = chat.send_message(prompt, **optional_params)
|
response_obj = chat.send_message(prompt, generation_config=GenerationConfig(**optional_params))
|
||||||
completion_response = response_obj.text
|
completion_response = response_obj.text
|
||||||
response_obj = response_obj._raw_response
|
response_obj = response_obj._raw_response
|
||||||
elif mode == "chat":
|
elif mode == "chat":
|
||||||
chat = chat_model.start_chat()
|
chat = llm_model.start_chat()
|
||||||
request_str+= f"chat = chat_model.start_chat()\n"
|
request_str+= f"chat = llm_model.start_chat()\n"
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
|
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
|
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
|
||||||
|
@ -149,12 +154,14 @@ def completion(
|
||||||
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
|
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
|
||||||
optional_params.pop("stream", None) # vertex ai raises an error when passing stream in optional params
|
optional_params.pop("stream", None) # vertex ai raises an error when passing stream in optional params
|
||||||
request_str += f"chat.send_message_streaming({prompt}, **{optional_params})\n"
|
request_str += f"chat.send_message_streaming({prompt}, **{optional_params})\n"
|
||||||
|
## LOGGING
|
||||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||||
model_response = chat.send_message_streaming(prompt, **optional_params)
|
model_response = chat.send_message_streaming(prompt, **optional_params)
|
||||||
optional_params["stream"] = True
|
optional_params["stream"] = True
|
||||||
return model_response
|
return model_response
|
||||||
|
|
||||||
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
|
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
|
||||||
|
## LOGGING
|
||||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||||
completion_response = chat.send_message(prompt, **optional_params).text
|
completion_response = chat.send_message(prompt, **optional_params).text
|
||||||
elif mode == "text":
|
elif mode == "text":
|
||||||
|
@ -162,12 +169,14 @@ def completion(
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
optional_params.pop("stream", None) # See note above on handling streaming for vertex ai
|
optional_params.pop("stream", None) # See note above on handling streaming for vertex ai
|
||||||
request_str += f"text_model.predict_streaming({prompt}, **{optional_params})\n"
|
request_str += f"text_model.predict_streaming({prompt}, **{optional_params})\n"
|
||||||
|
## LOGGING
|
||||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||||
model_response = text_model.predict_streaming(prompt, **optional_params)
|
model_response = text_model.predict_streaming(prompt, **optional_params)
|
||||||
optional_params["stream"] = True
|
optional_params["stream"] = True
|
||||||
return model_response
|
return model_response
|
||||||
|
|
||||||
request_str += f"text_model.predict({prompt}, **{optional_params}).text\n"
|
request_str += f"text_model.predict({prompt}, **{optional_params}).text\n"
|
||||||
|
## LOGGING
|
||||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||||
completion_response = text_model.predict(prompt, **optional_params).text
|
completion_response = text_model.predict(prompt, **optional_params).text
|
||||||
|
|
||||||
|
@ -207,6 +216,49 @@ def completion(
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise VertexAIError(status_code=500, message=str(e))
|
raise VertexAIError(status_code=500, message=str(e))
|
||||||
|
|
||||||
|
async def async_completion(llm_model, mode: str, prompt: str, model: str, model_response: ModelResponse, logging_obj=None, request_str=None, **optional_params):
|
||||||
|
"""
|
||||||
|
Add support for acompletion calls for gemini-pro
|
||||||
|
"""
|
||||||
|
from vertexai.preview.generative_models import GenerationConfig
|
||||||
|
|
||||||
|
if mode == "":
|
||||||
|
# gemini-pro
|
||||||
|
llm_model = llm_model.start_chat()
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||||
|
response_obj = await llm_model.send_message_async(prompt, generation_config=GenerationConfig(**optional_params))
|
||||||
|
completion_response = response_obj.text
|
||||||
|
response_obj = response_obj._raw_response
|
||||||
|
elif mode == "chat":
|
||||||
|
# chat-bison etc.
|
||||||
|
pass
|
||||||
|
elif mode == "text":
|
||||||
|
# gecko etc.
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
## RESPONSE OBJECT
|
||||||
|
if len(str(completion_response)) > 0:
|
||||||
|
model_response["choices"][0]["message"][
|
||||||
|
"content"
|
||||||
|
] = str(completion_response)
|
||||||
|
model_response["choices"][0]["message"]["content"] = str(completion_response)
|
||||||
|
model_response["created"] = int(time.time())
|
||||||
|
model_response["model"] = model
|
||||||
|
## CALCULATING USAGE
|
||||||
|
if model in litellm.vertex_language_models and response_obj is not None:
|
||||||
|
model_response["choices"][0].finish_reason = response_obj.candidates[0].finish_reason.name
|
||||||
|
usage = Usage(prompt_tokens=response_obj.usage_metadata.prompt_token_count,
|
||||||
|
completion_tokens=response_obj.usage_metadata.candidates_token_count,
|
||||||
|
total_tokens=response_obj.usage_metadata.total_token_count)
|
||||||
|
model_response.usage = usage
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
def async_streaming():
|
||||||
|
"""
|
||||||
|
Add support for async streaming calls for gemini-pro
|
||||||
|
"""
|
||||||
|
|
||||||
def embedding():
|
def embedding():
|
||||||
# logic for parsing in - calling - parsing out model embedding calls
|
# logic for parsing in - calling - parsing out model embedding calls
|
||||||
|
|
|
@ -177,7 +177,8 @@ async def acompletion(*args, **kwargs):
|
||||||
or custom_llm_provider == "perplexity"
|
or custom_llm_provider == "perplexity"
|
||||||
or custom_llm_provider == "text-completion-openai"
|
or custom_llm_provider == "text-completion-openai"
|
||||||
or custom_llm_provider == "huggingface"
|
or custom_llm_provider == "huggingface"
|
||||||
or custom_llm_provider == "ollama"): # currently implemented aiohttp calls for just azure and openai, soon all.
|
or custom_llm_provider == "ollama"
|
||||||
|
or custom_llm_provider == "vertex_ai"): # currently implemented aiohttp calls for just azure and openai, soon all.
|
||||||
if kwargs.get("stream", False):
|
if kwargs.get("stream", False):
|
||||||
response = completion(*args, **kwargs)
|
response = completion(*args, **kwargs)
|
||||||
else:
|
else:
|
||||||
|
@ -1152,7 +1153,8 @@ def completion(
|
||||||
encoding=encoding,
|
encoding=encoding,
|
||||||
vertex_location=vertex_ai_location,
|
vertex_location=vertex_ai_location,
|
||||||
vertex_project=vertex_ai_project,
|
vertex_project=vertex_ai_project,
|
||||||
logging_obj=logging
|
logging_obj=logging,
|
||||||
|
acompletion=acompletion
|
||||||
)
|
)
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
|
|
|
@ -9,15 +9,15 @@ import os, io
|
||||||
sys.path.insert(
|
sys.path.insert(
|
||||||
0, os.path.abspath("../..")
|
0, os.path.abspath("../..")
|
||||||
) # Adds the parent directory to the system path
|
) # Adds the parent directory to the system path
|
||||||
import pytest
|
import pytest, asyncio
|
||||||
import litellm
|
import litellm
|
||||||
from litellm import embedding, completion, completion_cost, Timeout
|
from litellm import embedding, completion, completion_cost, Timeout, acompletion
|
||||||
from litellm import RateLimitError
|
from litellm import RateLimitError
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import tempfile
|
import tempfile
|
||||||
|
|
||||||
# litellm.num_retries = 3
|
litellm.num_retries = 3
|
||||||
litellm.cache = None
|
litellm.cache = None
|
||||||
user_message = "Write a short poem about the sky"
|
user_message = "Write a short poem about the sky"
|
||||||
messages = [{"content": user_message, "role": "user"}]
|
messages = [{"content": user_message, "role": "user"}]
|
||||||
|
@ -73,14 +73,14 @@ def test_vertex_ai():
|
||||||
litellm.vertex_project = "hardy-device-386718"
|
litellm.vertex_project = "hardy-device-386718"
|
||||||
|
|
||||||
test_models = random.sample(test_models, 4)
|
test_models = random.sample(test_models, 4)
|
||||||
test_models += litellm.vertex_language_models # always test gemini-pro
|
test_models = litellm.vertex_language_models # always test gemini-pro
|
||||||
for model in test_models:
|
for model in test_models:
|
||||||
try:
|
try:
|
||||||
if model in ["code-gecko@001", "code-gecko@latest", "code-bison@001", "text-bison@001"]:
|
if model in ["code-gecko@001", "code-gecko@latest", "code-bison@001", "text-bison@001"]:
|
||||||
# our account does not have access to this model
|
# our account does not have access to this model
|
||||||
continue
|
continue
|
||||||
print("making request", model)
|
print("making request", model)
|
||||||
response = completion(model=model, messages=[{'role': 'user', 'content': 'hi'}])
|
response = completion(model=model, messages=[{'role': 'user', 'content': 'hi'}], temperature=0.7)
|
||||||
print("\nModel Response", response)
|
print("\nModel Response", response)
|
||||||
print(response)
|
print(response)
|
||||||
assert type(response.choices[0].message.content) == str
|
assert type(response.choices[0].message.content) == str
|
||||||
|
@ -117,3 +117,19 @@ def test_vertex_ai_stream():
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pytest.fail(f"Error occurred: {e}")
|
pytest.fail(f"Error occurred: {e}")
|
||||||
# test_vertex_ai_stream()
|
# test_vertex_ai_stream()
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_async_vertexai_response():
|
||||||
|
load_vertex_ai_credentials()
|
||||||
|
user_message = "Hello, how are you?"
|
||||||
|
messages = [{"content": user_message, "role": "user"}]
|
||||||
|
try:
|
||||||
|
response = await acompletion(model="gemini-pro", messages=messages, temperature=0.7, timeout=5)
|
||||||
|
# response = await response
|
||||||
|
print(f"response: {response}")
|
||||||
|
except litellm.Timeout as e:
|
||||||
|
pass
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(f"An exception occurred: {e}")
|
||||||
|
|
||||||
|
asyncio.run(test_async_vertexai_response())
|
Loading…
Add table
Add a link
Reference in a new issue