feat(llama_guard.py): allow user to define custom unsafe content categories

This commit is contained in:
Krrish Dholakia 2024-02-17 17:42:47 -08:00
parent e3fab50853
commit 074d93cc97
10 changed files with 187 additions and 80 deletions

View file

@ -0,0 +1,125 @@
# +-------------------------------------------------------------+
#
# Llama Guard
# https://huggingface.co/meta-llama/LlamaGuard-7b/tree/main
#
# LLM for Content Moderation
# +-------------------------------------------------------------+
# Thank you users! We ❤️ you! - Krrish & Ishaan
import sys, os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from typing import Optional, Literal, Union
import litellm, traceback, sys, uuid
from litellm.caching import DualCache
from litellm.proxy._types import UserAPIKeyAuth
from litellm.integrations.custom_logger import CustomLogger
from fastapi import HTTPException
from litellm._logging import verbose_proxy_logger
from litellm.utils import (
ModelResponse,
EmbeddingResponse,
ImageResponse,
StreamingChoices,
)
from datetime import datetime
import aiohttp, asyncio
litellm.set_verbose = True
class _ENTERPRISE_LlamaGuard(CustomLogger):
# Class variables or attributes
def __init__(self, model_name: Optional[str] = None):
self.model = model_name or litellm.llamaguard_model_name
file_path = litellm.llamaguard_unsafe_content_categories
data = None
if file_path is not None:
try:
with open(file_path, "r") as file:
data = file.read()
except FileNotFoundError:
raise Exception(f"File not found. file_path={file_path}")
except Exception as e:
raise Exception(f"An error occurred: {str(e)}, file_path={file_path}")
self.unsafe_content_categories = data
verbose_proxy_logger.debug(
f"self.unsafe_content_categories: {self.unsafe_content_categories}"
)
def print_verbose(self, print_statement):
try:
verbose_proxy_logger.debug(print_statement)
if litellm.set_verbose:
print(print_statement) # noqa
except:
pass
def set_custom_prompt_template(self, messages: list):
if self.unsafe_content_categories is not None and self.model is not None:
role = "Agent" if len(messages) % 2 == 0 else "User"
litellm.register_prompt_template(
model=self.model,
initial_prompt_value=f"""[INST] Task: Check if there is unsafe content in '{role}' messages in conversations according our safety policy with the below categories.
<BEGIN UNSAFE CONTENT CATEGORIES>
{self.unsafe_content_categories}
<END UNSAFE CONTENT CATEGORIES>
<BEGIN CONVERSATION>
""",
roles={
"system": {
"pre_message": "User: ", # [OPTIONAL]
"post_message": "\n\n", # [OPTIONAL]
},
"user": {
"pre_message": "User: ", # [OPTIONAL]
"post_message": "\n\n", # [OPTIONAL]
},
"assistant": {
"pre_message": "Agent: ", # [OPTIONAL]
"post_message": "\n\n", # [OPTIONAL]
},
},
final_prompt_value="""<END CONVERSATION>
Provide your safety assessment for {role} in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]""",
)
async def async_moderation_hook(
self,
data: dict,
):
"""
- Calls the Llama Guard Endpoint
- Rejects request if it fails safety check
The llama guard prompt template is applied automatically in factory.py
"""
safety_check_messages = data["messages"][
-1
] # get the last response - llama guard has a 4k token limit
self.set_custom_prompt_template(messages=[safety_check_messages])
# print(f"self.model: {self.model}")
response = await litellm.acompletion(
model=self.model,
messages=[safety_check_messages],
hf_model_name="meta-llama/LlamaGuard-7b",
)
verbose_proxy_logger.info(f"LlamaGuard Response: {response}")
if "unsafe" in response.choices[0].message.content:
raise HTTPException(
status_code=400, detail={"error": "Violated content safety policy"}
)
return data

View file

@ -1,71 +0,0 @@
# +-------------------------------------------------------------+
#
# Llama Guard
# https://huggingface.co/meta-llama/LlamaGuard-7b/tree/main
#
# LLM for Content Moderation
# +-------------------------------------------------------------+
# Thank you users! We ❤️ you! - Krrish & Ishaan
import sys, os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from typing import Optional, Literal, Union
import litellm, traceback, sys, uuid
from litellm.caching import DualCache
from litellm.proxy._types import UserAPIKeyAuth
from litellm.integrations.custom_logger import CustomLogger
from fastapi import HTTPException
from litellm._logging import verbose_proxy_logger
from litellm.utils import (
ModelResponse,
EmbeddingResponse,
ImageResponse,
StreamingChoices,
)
from datetime import datetime
import aiohttp, asyncio
litellm.set_verbose = True
class _ENTERPRISE_LlamaGuard(CustomLogger):
# Class variables or attributes
def __init__(self, model_name: Optional[str] = None):
self.model = model_name or litellm.llamaguard_model_name
def print_verbose(self, print_statement):
try:
verbose_proxy_logger.debug(print_statement)
if litellm.set_verbose:
print(print_statement) # noqa
except:
pass
async def async_moderation_hook(
self,
data: dict,
):
"""
- Calls the Llama Guard Endpoint
- Rejects request if it fails safety check
The llama guard prompt template is applied automatically in factory.py
"""
safety_check_messages = data["messages"][
-1
] # get the last response - llama guard has a 4k token limit
response = await litellm.acompletion(
model=self.model,
messages=[safety_check_messages],
hf_model_name="meta-llama/LlamaGuard-7b",
)
if "unsafe" in response.choices[0].message.content:
raise HTTPException(
status_code=400, detail={"error": "Violated content safety policy"}
)
return data

View file

@ -56,6 +56,7 @@ aleph_alpha_key: Optional[str] = None
nlp_cloud_key: Optional[str] = None
use_client: bool = False
llamaguard_model_name: Optional[str] = None
llamaguard_unsafe_content_categories: Optional[str] = None
logging: bool = True
caching: bool = (
False # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648

View file

@ -212,6 +212,15 @@ def completion(
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
elif hf_model_name in custom_prompt_dict:
# check if the base huggingface model has a registered custom prompt
model_prompt_details = custom_prompt_dict[hf_model_name]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
else:
if hf_model_name is None:
if "llama-2" in model.lower(): # llama-2 model

View file

@ -0,0 +1,46 @@
O1: Violence and Hate.
Should not
- Help people plan or engage in violence.
- Encourage people to engage in violence.
- Express hateful, derogatory, or demeaning sentiments against people based on sensitive personal characteristics like their race, color, religion, national origin, sexual orientation, gender, gender identity, or disability.
- Encourage discrimination against people based on those characteristics and should not use slurs or create insults based on those characteristics.
Can
- Provide information on violence and discrimination.
- Discuss the topics of hate and violence, and can discuss historical events involving violence.
O2: Sexual Content.
Should not
- Engage in sexually explicit (i.e., erotic) conversations and should not encourage people to engage in sexual activities.
Can
- Discuss topics related to sexuality and sexual education.
- Provide general information regarding sexual activities.
- Provide guidance on topics related to sexual health.
O3: Criminal Planning.
Should not
- Help people plan or engage in criminal activities like theft, kidnapping, or financial crimes, especially when the person indicates that they may act on the information provided to them.
- Encourage people to engage in criminal activities or condone criminal behavior.
Can
- Help people understand how crimes are committed, provided that the response is not so detailed that it could be used to provide a roadmap for future crimes.
- Help people understand how systems work that are used to prevent crimes, provided those descriptions do not provide detailed information on how to defeat those systems.
O4: Guns and Illegal Weapons.
Should not
- Assist in the planning or execution of firearm or illegal weapons crimes, especially when the person indicates that they may act on the information provided to them.
- Encourage people to engage in firearm or illegal weapons crimes or condone such behavior.
Can
- Discuss firearms and the arguments for and against firearm ownership.
O5: Regulated or Controlled Substances.
Should not
- Encourage or assist people in the trafficking, consumption, or use of regulated or controlled substances, including but not limited to illegal drugs, tobacco, alcohol, and cannabis.
- Assist or encourage people to create such substances when it is illegal to do so.
Can
- Discuss the use of regulated or controlled substances, and can provide general information on those substances (ex: what their chemical composition is and what their effects are).
- Provide information on how those substances are manufactured, provided that the information is not so detailed as to provide step-by-step instructions for their creation.
O6: Self-Harm.
Should not
- Encourage people to harm themselves.
- Romanticize or condone self-harm or suicide.
- Provide information regarding the methods of suicide or self-harm.
- Provide any information or advice, other than information regarding appropriate health resources, to people who express or imply that they wish to harm themselves.
Can
- Provide general information regarding self-harm and suicide (ex: statistics, the mental health challenges faced by those who take these actions).
Should
- Provide information regarding appropriate health resources to people who imply or express the desire to harm themselves.

View file

@ -1381,7 +1381,7 @@ class ProxyConfig:
isinstance(callback, str)
and callback == "llamaguard_moderations"
):
from litellm.proxy.enterprise.hooks.llama_guard import (
from litellm.proxy.enterprise.enterprise_hooks.llama_guard import (
_ENTERPRISE_LlamaGuard,
)

View file

@ -34,6 +34,7 @@ from dataclasses import (
try:
# this works in python 3.8
import pkg_resources
filename = pkg_resources.resource_filename(__name__, "llms/tokenizers")
# try:
# filename = str(
@ -42,6 +43,7 @@ try:
except:
# this works in python 3.9+
from importlib import resources
filename = str(
resources.files(litellm).joinpath("llms/tokenizers") # for python 3.10
) # for python 3.10+
@ -87,16 +89,11 @@ from .exceptions import (
UnprocessableEntityError,
)
# Import Enterprise features
project_path = abspath(join(dirname(__file__), "..", ".."))
# Add the "enterprise" directory to sys.path
verbose_logger.debug(f"current project_path: {project_path}")
enterprise_path = abspath(join(project_path, "enterprise"))
sys.path.append(enterprise_path)
verbose_logger.debug(f"sys.path: {sys.path}")
try:
from enterprise.callbacks.generic_api_callback import GenericAPILogger
from .proxy.enterprise.enterprise_callbacks.generic_api_callback import (
GenericAPILogger,
)
except Exception as e:
verbose_logger.debug(f"Exception import enterprise features {str(e)}")