forked from phoenix/litellm-mirror
feat - add param mapping for nvidia nim
This commit is contained in:
parent
d829d6393d
commit
07829514d1
3 changed files with 103 additions and 0 deletions
|
@ -816,6 +816,7 @@ from .llms.openai import (
|
|||
DeepInfraConfig,
|
||||
AzureAIStudioConfig,
|
||||
)
|
||||
from .llms.nvidia_nim import NvidiaNimConfig
|
||||
from .llms.text_completion_codestral import MistralTextCompletionConfig
|
||||
from .llms.azure import (
|
||||
AzureOpenAIConfig,
|
||||
|
|
79
litellm/llms/nvidia_nim.py
Normal file
79
litellm/llms/nvidia_nim.py
Normal file
|
@ -0,0 +1,79 @@
|
|||
"""
|
||||
Nvidia NIM endpoint: https://docs.api.nvidia.com/nim/reference/databricks-dbrx-instruct-infer
|
||||
|
||||
This is OpenAI compatible
|
||||
|
||||
This file only contains param mapping logic
|
||||
|
||||
API calling is done using the OpenAI SDK with an api_base
|
||||
"""
|
||||
|
||||
import types
|
||||
from typing import Optional, Union
|
||||
|
||||
|
||||
class NvidiaNimConfig:
|
||||
"""
|
||||
Reference: https://docs.api.nvidia.com/nim/reference/databricks-dbrx-instruct-infer
|
||||
|
||||
The class `NvidiaNimConfig` provides configuration for the Nvidia NIM's Chat Completions API interface. Below are the parameters:
|
||||
"""
|
||||
|
||||
temperature: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
frequency_penalty: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
max_tokens: Optional[int] = None
|
||||
stop: Optional[Union[str, list]] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
temperature: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
stop: Optional[Union[str, list]] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"stream",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"frequency_penalty",
|
||||
"presence_penalty",
|
||||
"max_tokens",
|
||||
"stop",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self, non_default_params: dict, optional_params: dict
|
||||
) -> dict:
|
||||
supported_openai_params = self.get_supported_openai_params()
|
||||
for param, value in non_default_params.items():
|
||||
if param in supported_openai_params:
|
||||
optional_params[param] = value
|
||||
return optional_params
|
|
@ -2410,6 +2410,7 @@ def get_optional_params(
|
|||
and custom_llm_provider != "anyscale"
|
||||
and custom_llm_provider != "together_ai"
|
||||
and custom_llm_provider != "groq"
|
||||
and custom_llm_provider != "nvidia_nim"
|
||||
and custom_llm_provider != "deepseek"
|
||||
and custom_llm_provider != "codestral"
|
||||
and custom_llm_provider != "mistral"
|
||||
|
@ -3060,6 +3061,14 @@ def get_optional_params(
|
|||
optional_params = litellm.DatabricksConfig().map_openai_params(
|
||||
non_default_params=non_default_params, optional_params=optional_params
|
||||
)
|
||||
elif custom_llm_provider == "nvidia_nim":
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
optional_params = litellm.NvidiaNimConfig().map_openai_params(
|
||||
non_default_params=non_default_params, optional_params=optional_params
|
||||
)
|
||||
elif custom_llm_provider == "groq":
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
|
@ -3626,6 +3635,8 @@ def get_supported_openai_params(
|
|||
return litellm.OllamaChatConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "anthropic":
|
||||
return litellm.AnthropicConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "nvidia_nim":
|
||||
return litellm.NvidiaNimConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "groq":
|
||||
return [
|
||||
"temperature",
|
||||
|
@ -3986,6 +3997,10 @@ def get_llm_provider(
|
|||
# groq is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.groq.com/openai/v1
|
||||
api_base = "https://api.groq.com/openai/v1"
|
||||
dynamic_api_key = get_secret("GROQ_API_KEY")
|
||||
elif custom_llm_provider == "nvidia_nim":
|
||||
# nvidia_nim is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.endpoints.anyscale.com/v1
|
||||
api_base = "https://integrate.api.nvidia.com/v1"
|
||||
dynamic_api_key = get_secret("NVIDIA_NIM_API_KEY")
|
||||
elif custom_llm_provider == "codestral":
|
||||
# codestral is openai compatible, we just need to set this to custom_openai and have the api_base be https://codestral.mistral.ai/v1
|
||||
api_base = "https://codestral.mistral.ai/v1"
|
||||
|
@ -4087,6 +4102,9 @@ def get_llm_provider(
|
|||
elif endpoint == "api.groq.com/openai/v1":
|
||||
custom_llm_provider = "groq"
|
||||
dynamic_api_key = get_secret("GROQ_API_KEY")
|
||||
elif endpoint == "https://integrate.api.nvidia.com/v1":
|
||||
custom_llm_provider = "nvidia_nim"
|
||||
dynamic_api_key = get_secret("NVIDIA_NIM_API_KEY")
|
||||
elif endpoint == "https://codestral.mistral.ai/v1":
|
||||
custom_llm_provider = "codestral"
|
||||
dynamic_api_key = get_secret("CODESTRAL_API_KEY")
|
||||
|
@ -4900,6 +4918,11 @@ def validate_environment(model: Optional[str] = None) -> dict:
|
|||
keys_in_environment = True
|
||||
else:
|
||||
missing_keys.append("GROQ_API_KEY")
|
||||
elif custom_llm_provider == "nvidia_nim":
|
||||
if "NVIDIA_NIM_API_KEY" in os.environ:
|
||||
keys_in_environment = True
|
||||
else:
|
||||
missing_keys.append("NVIDIA_NIM_API_KEY")
|
||||
elif (
|
||||
custom_llm_provider == "codestral"
|
||||
or custom_llm_provider == "text-completion-codestral"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue