forked from phoenix/litellm-mirror
feat(aporio_ai.py): support aporio ai prompt injection for chat completion requests
Closes https://github.com/BerriAI/litellm/issues/2950
This commit is contained in:
parent
e587d32058
commit
07d90f6739
5 changed files with 217 additions and 6 deletions
|
@ -31,6 +31,7 @@ Features:
|
|||
- **Guardrails, PII Masking, Content Moderation**
|
||||
- ✅ [Content Moderation with LLM Guard, LlamaGuard, Secret Detection, Google Text Moderations](#content-moderation)
|
||||
- ✅ [Prompt Injection Detection (with LakeraAI API)](#prompt-injection-detection---lakeraai)
|
||||
- ✅ [Prompt Injection Detection (with Aporio API)](#prompt-injection-detection---aporio-ai)
|
||||
- ✅ [Switch LakeraAI on / off per request](guardrails#control-guardrails-onoff-per-request)
|
||||
- ✅ Reject calls from Blocked User list
|
||||
- ✅ Reject calls (incoming / outgoing) with Banned Keywords (e.g. competitors)
|
||||
|
@ -953,6 +954,72 @@ curl --location 'http://localhost:4000/chat/completions' \
|
|||
Need to control LakeraAI per Request ? Doc here 👉: [Switch LakerAI on / off per request](prompt_injection.md#✨-enterprise-switch-lakeraai-on--off-per-api-call)
|
||||
:::
|
||||
|
||||
## Prompt Injection Detection - Aporio AI
|
||||
|
||||
Use this if you want to reject /chat/completion calls that have prompt injection attacks with [AporioAI](https://www.aporia.com/)
|
||||
|
||||
#### Usage
|
||||
|
||||
Step 1. Add env
|
||||
|
||||
```env
|
||||
APORIO_API_KEY="eyJh****"
|
||||
APORIO_API_BASE="https://gr..."
|
||||
```
|
||||
|
||||
Step 2. Add `aporio_prompt_injection` to your callbacks
|
||||
|
||||
```yaml
|
||||
litellm_settings:
|
||||
callbacks: ["aporio_prompt_injection"]
|
||||
```
|
||||
|
||||
That's it, start your proxy
|
||||
|
||||
Test it with this request -> expect it to get rejected by LiteLLM Proxy
|
||||
|
||||
```shell
|
||||
curl --location 'http://localhost:4000/chat/completions' \
|
||||
--header 'Authorization: Bearer sk-1234' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"model": "llama3",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "You suck!"
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
**Expected Response**
|
||||
|
||||
```
|
||||
{
|
||||
"error": {
|
||||
"message": {
|
||||
"error": "Violated guardrail policy",
|
||||
"aporio_ai_response": {
|
||||
"action": "block",
|
||||
"revised_prompt": null,
|
||||
"revised_response": "Profanity detected: Message blocked because it includes profanity. Please rephrase.",
|
||||
"explain_log": null
|
||||
}
|
||||
},
|
||||
"type": "None",
|
||||
"param": "None",
|
||||
"code": 400
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
:::info
|
||||
|
||||
Need to control AporioAI per Request ? Doc here 👉: [Create a guardrail](./guardrails.md)
|
||||
:::
|
||||
|
||||
|
||||
## Swagger Docs - Custom Routes + Branding
|
||||
|
||||
:::info
|
||||
|
|
124
enterprise/enterprise_hooks/aporio_ai.py
Normal file
124
enterprise/enterprise_hooks/aporio_ai.py
Normal file
|
@ -0,0 +1,124 @@
|
|||
# +-------------------------------------------------------------+
|
||||
#
|
||||
# Use AporioAI for your LLM calls
|
||||
#
|
||||
# +-------------------------------------------------------------+
|
||||
# Thank you users! We ❤️ you! - Krrish & Ishaan
|
||||
|
||||
import sys, os
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
from typing import Optional, Literal, Union
|
||||
import litellm, traceback, sys, uuid
|
||||
from litellm.caching import DualCache
|
||||
from litellm.proxy._types import UserAPIKeyAuth
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from fastapi import HTTPException
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.proxy.guardrails.guardrail_helpers import should_proceed_based_on_metadata
|
||||
from typing import List
|
||||
from datetime import datetime
|
||||
import aiohttp, asyncio
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||
import httpx
|
||||
import json
|
||||
|
||||
litellm.set_verbose = True
|
||||
|
||||
GUARDRAIL_NAME = "aporio"
|
||||
|
||||
|
||||
class _ENTERPRISE_Aporio(CustomLogger):
|
||||
def __init__(self, api_key: Optional[str] = None, api_base: Optional[str] = None):
|
||||
self.async_handler = AsyncHTTPHandler(
|
||||
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
)
|
||||
self.aporio_api_key = api_key or os.environ["APORIO_API_KEY"]
|
||||
self.aporio_api_base = api_base or os.environ["APORIO_API_BASE"]
|
||||
|
||||
#### CALL HOOKS - proxy only ####
|
||||
def transform_messages(self, messages: List[dict]) -> List[dict]:
|
||||
supported_openai_roles = ["system", "user", "assistant"]
|
||||
default_role = "other" # for unsupported roles - e.g. tool
|
||||
new_messages = []
|
||||
for m in messages:
|
||||
if m.get("role", "") in supported_openai_roles:
|
||||
new_messages.append(m)
|
||||
else:
|
||||
new_messages.append(
|
||||
{
|
||||
"role": default_role,
|
||||
**{key: value for key, value in m.items() if key != "role"},
|
||||
}
|
||||
)
|
||||
|
||||
return new_messages
|
||||
|
||||
async def async_moderation_hook( ### 👈 KEY CHANGE ###
|
||||
self,
|
||||
data: dict,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
call_type: Literal["completion", "embeddings", "image_generation"],
|
||||
):
|
||||
|
||||
if (
|
||||
await should_proceed_based_on_metadata(
|
||||
data=data,
|
||||
guardrail_name=GUARDRAIL_NAME,
|
||||
)
|
||||
is False
|
||||
):
|
||||
return
|
||||
|
||||
new_messages: Optional[List[dict]] = None
|
||||
if "messages" in data and isinstance(data["messages"], list):
|
||||
new_messages = self.transform_messages(messages=data["messages"])
|
||||
|
||||
if new_messages is not None:
|
||||
data = {"messages": new_messages, "validation_target": "prompt"}
|
||||
|
||||
_json_data = json.dumps(data)
|
||||
|
||||
"""
|
||||
export APORIO_API_KEY=<your key>
|
||||
curl https://gr-prd-trial.aporia.com/some-id \
|
||||
-X POST \
|
||||
-H "X-APORIA-API-KEY: $APORIO_API_KEY" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "This is a test prompt"
|
||||
}
|
||||
],
|
||||
}
|
||||
'
|
||||
"""
|
||||
|
||||
response = await self.async_handler.post(
|
||||
url=self.aporio_api_base + "/validate",
|
||||
data=_json_data,
|
||||
headers={
|
||||
"X-APORIA-API-KEY": self.aporio_api_key,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
)
|
||||
verbose_proxy_logger.debug("Aporio AI response: %s", response.text)
|
||||
if response.status_code == 200:
|
||||
# check if the response was flagged
|
||||
_json_response = response.json()
|
||||
action: str = _json_response.get(
|
||||
"action"
|
||||
) # possible values are modify, passthrough, block, rephrase
|
||||
if action == "block":
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail={
|
||||
"error": "Violated guardrail policy",
|
||||
"aporio_ai_response": _json_response,
|
||||
},
|
||||
)
|
|
@ -1,5 +1,10 @@
|
|||
model_list:
|
||||
- model_name: groq-whisper
|
||||
- model_name: "*"
|
||||
litellm_params:
|
||||
model: groq/whisper-large-v3
|
||||
model: openai/*
|
||||
|
||||
litellm_settings:
|
||||
guardrails:
|
||||
- prompt_injection:
|
||||
callbacks: ["aporio_prompt_injection"]
|
||||
default_on: true
|
||||
|
|
|
@ -112,6 +112,17 @@ def initialize_callbacks_on_proxy(
|
|||
|
||||
lakera_moderations_object = _ENTERPRISE_lakeraAI_Moderation()
|
||||
imported_list.append(lakera_moderations_object)
|
||||
elif isinstance(callback, str) and callback == "aporio_prompt_injection":
|
||||
from enterprise.enterprise_hooks.aporio_ai import _ENTERPRISE_Aporio
|
||||
|
||||
if premium_user is not True:
|
||||
raise Exception(
|
||||
"Trying to use Aporio AI Guardrail"
|
||||
+ CommonProxyErrors.not_premium_user.value
|
||||
)
|
||||
|
||||
aporio_guardrail_object = _ENTERPRISE_Aporio()
|
||||
imported_list.append(aporio_guardrail_object)
|
||||
elif isinstance(callback, str) and callback == "google_text_moderation":
|
||||
from enterprise.enterprise_hooks.google_text_moderation import (
|
||||
_ENTERPRISE_GoogleTextModeration,
|
||||
|
|
|
@ -453,8 +453,10 @@ class _PROXY_MaxParallelRequestsHandler(CustomLogger):
|
|||
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
try:
|
||||
self.print_verbose(f"Inside Max Parallel Request Failure Hook")
|
||||
global_max_parallel_requests = kwargs["litellm_params"]["metadata"].get(
|
||||
"global_max_parallel_requests", None
|
||||
global_max_parallel_requests = (
|
||||
kwargs["litellm_params"]
|
||||
.get("metadata", {})
|
||||
.get("global_max_parallel_requests", None)
|
||||
)
|
||||
user_api_key = (
|
||||
kwargs["litellm_params"].get("metadata", {}).get("user_api_key", None)
|
||||
|
@ -516,5 +518,7 @@ class _PROXY_MaxParallelRequestsHandler(CustomLogger):
|
|||
) # save in cache for up to 1 min.
|
||||
except Exception as e:
|
||||
verbose_proxy_logger.info(
|
||||
f"Inside Parallel Request Limiter: An exception occurred - {str(e)}."
|
||||
"Inside Parallel Request Limiter: An exception occurred - {}\n{}".format(
|
||||
str(e), traceback.format_exc()
|
||||
)
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue