forked from phoenix/litellm-mirror
Merge pull request #6672 from BerriAI/litellm_add_async_bedrock_image_gen
(feat) add bedrock image gen async support
This commit is contained in:
commit
0871c33a24
10 changed files with 557 additions and 200 deletions
|
@ -625,6 +625,48 @@ jobs:
|
|||
paths:
|
||||
- llm_translation_coverage.xml
|
||||
- llm_translation_coverage
|
||||
image_gen_testing:
|
||||
docker:
|
||||
- image: cimg/python:3.11
|
||||
auth:
|
||||
username: ${DOCKERHUB_USERNAME}
|
||||
password: ${DOCKERHUB_PASSWORD}
|
||||
working_directory: ~/project
|
||||
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install Dependencies
|
||||
command: |
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install -r requirements.txt
|
||||
pip install "pytest==7.3.1"
|
||||
pip install "pytest-retry==1.6.3"
|
||||
pip install "pytest-cov==5.0.0"
|
||||
pip install "pytest-asyncio==0.21.1"
|
||||
pip install "respx==0.21.1"
|
||||
# Run pytest and generate JUnit XML report
|
||||
- run:
|
||||
name: Run tests
|
||||
command: |
|
||||
pwd
|
||||
ls
|
||||
python -m pytest -vv tests/image_gen_tests --cov=litellm --cov-report=xml -x -s -v --junitxml=test-results/junit.xml --durations=5
|
||||
no_output_timeout: 120m
|
||||
- run:
|
||||
name: Rename the coverage files
|
||||
command: |
|
||||
mv coverage.xml image_gen_coverage.xml
|
||||
mv .coverage image_gen_coverage
|
||||
|
||||
# Store test results
|
||||
- store_test_results:
|
||||
path: test-results
|
||||
- persist_to_workspace:
|
||||
root: .
|
||||
paths:
|
||||
- image_gen_coverage.xml
|
||||
- image_gen_coverage
|
||||
logging_testing:
|
||||
docker:
|
||||
- image: cimg/python:3.11
|
||||
|
@ -877,7 +919,7 @@ jobs:
|
|||
command: |
|
||||
pwd
|
||||
ls
|
||||
python -m pytest -s -vv tests/*.py -x --junitxml=test-results/junit.xml --durations=5 --ignore=tests/otel_tests --ignore=tests/pass_through_tests --ignore=tests/proxy_admin_ui_tests --ignore=tests/load_tests --ignore=tests/llm_translation
|
||||
python -m pytest -s -vv tests/*.py -x --junitxml=test-results/junit.xml --durations=5 --ignore=tests/otel_tests --ignore=tests/pass_through_tests --ignore=tests/proxy_admin_ui_tests --ignore=tests/load_tests --ignore=tests/llm_translation --ignore=tests/image_gen_tests
|
||||
no_output_timeout: 120m
|
||||
|
||||
# Store test results
|
||||
|
@ -1114,7 +1156,7 @@ jobs:
|
|||
python -m venv venv
|
||||
. venv/bin/activate
|
||||
pip install coverage
|
||||
coverage combine llm_translation_coverage logging_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage auth_ui_unit_tests_coverage langfuse_coverage caching_coverage litellm_proxy_unit_tests_coverage
|
||||
coverage combine llm_translation_coverage logging_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage auth_ui_unit_tests_coverage langfuse_coverage caching_coverage litellm_proxy_unit_tests_coverage image_gen_coverage
|
||||
coverage xml
|
||||
- codecov/upload:
|
||||
file: ./coverage.xml
|
||||
|
@ -1403,6 +1445,12 @@ workflows:
|
|||
only:
|
||||
- main
|
||||
- /litellm_.*/
|
||||
- image_gen_testing:
|
||||
filters:
|
||||
branches:
|
||||
only:
|
||||
- main
|
||||
- /litellm_.*/
|
||||
- logging_testing:
|
||||
filters:
|
||||
branches:
|
||||
|
@ -1412,6 +1460,7 @@ workflows:
|
|||
- upload-coverage:
|
||||
requires:
|
||||
- llm_translation_testing
|
||||
- image_gen_testing
|
||||
- logging_testing
|
||||
- litellm_router_testing
|
||||
- caching_unit_tests
|
||||
|
@ -1451,6 +1500,7 @@ workflows:
|
|||
- load_testing
|
||||
- test_bad_database_url
|
||||
- llm_translation_testing
|
||||
- image_gen_testing
|
||||
- logging_testing
|
||||
- litellm_router_testing
|
||||
- caching_unit_tests
|
||||
|
|
|
@ -984,10 +984,10 @@ from .llms.bedrock.common_utils import (
|
|||
AmazonAnthropicClaude3Config,
|
||||
AmazonCohereConfig,
|
||||
AmazonLlamaConfig,
|
||||
AmazonStabilityConfig,
|
||||
AmazonMistralConfig,
|
||||
AmazonBedrockGlobalConfig,
|
||||
)
|
||||
from .llms.bedrock.image.amazon_stability1_transformation import AmazonStabilityConfig
|
||||
from .llms.bedrock.embed.amazon_titan_g1_transformation import AmazonTitanG1Config
|
||||
from .llms.bedrock.embed.amazon_titan_multimodal_transformation import (
|
||||
AmazonTitanMultimodalEmbeddingG1Config,
|
||||
|
|
|
@ -1,16 +1,28 @@
|
|||
import hashlib
|
||||
import json
|
||||
import os
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
||||
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.caching.caching import DualCache, InMemoryCache
|
||||
from litellm.secret_managers.main import get_secret
|
||||
from litellm.secret_managers.main import get_secret, get_secret_str
|
||||
|
||||
from .base import BaseLLM
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from botocore.credentials import Credentials
|
||||
else:
|
||||
Credentials = Any
|
||||
|
||||
|
||||
class Boto3CredentialsInfo(BaseModel):
|
||||
credentials: Credentials
|
||||
aws_region_name: str
|
||||
aws_bedrock_runtime_endpoint: Optional[str]
|
||||
|
||||
|
||||
class AwsAuthError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
|
@ -311,3 +323,74 @@ class BaseAWSLLM(BaseLLM):
|
|||
proxy_endpoint_url = endpoint_url
|
||||
|
||||
return endpoint_url, proxy_endpoint_url
|
||||
|
||||
def _get_boto_credentials_from_optional_params(
|
||||
self, optional_params: dict
|
||||
) -> Boto3CredentialsInfo:
|
||||
"""
|
||||
Get boto3 credentials from optional params
|
||||
|
||||
Args:
|
||||
optional_params (dict): Optional parameters for the model call
|
||||
|
||||
Returns:
|
||||
Credentials: Boto3 credentials object
|
||||
"""
|
||||
try:
|
||||
import boto3
|
||||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
## CREDENTIALS ##
|
||||
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
||||
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||
aws_session_token = optional_params.pop("aws_session_token", None)
|
||||
aws_region_name = optional_params.pop("aws_region_name", None)
|
||||
aws_role_name = optional_params.pop("aws_role_name", None)
|
||||
aws_session_name = optional_params.pop("aws_session_name", None)
|
||||
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
||||
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
||||
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
|
||||
aws_bedrock_runtime_endpoint = optional_params.pop(
|
||||
"aws_bedrock_runtime_endpoint", None
|
||||
) # https://bedrock-runtime.{region_name}.amazonaws.com
|
||||
|
||||
### SET REGION NAME ###
|
||||
if aws_region_name is None:
|
||||
# check env #
|
||||
litellm_aws_region_name = get_secret_str("AWS_REGION_NAME", None)
|
||||
|
||||
if litellm_aws_region_name is not None and isinstance(
|
||||
litellm_aws_region_name, str
|
||||
):
|
||||
aws_region_name = litellm_aws_region_name
|
||||
|
||||
standard_aws_region_name = get_secret_str("AWS_REGION", None)
|
||||
if standard_aws_region_name is not None and isinstance(
|
||||
standard_aws_region_name, str
|
||||
):
|
||||
aws_region_name = standard_aws_region_name
|
||||
|
||||
if aws_region_name is None:
|
||||
aws_region_name = "us-west-2"
|
||||
|
||||
credentials: Credentials = self.get_credentials(
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
aws_session_token=aws_session_token,
|
||||
aws_region_name=aws_region_name,
|
||||
aws_session_name=aws_session_name,
|
||||
aws_profile_name=aws_profile_name,
|
||||
aws_role_name=aws_role_name,
|
||||
aws_web_identity_token=aws_web_identity_token,
|
||||
aws_sts_endpoint=aws_sts_endpoint,
|
||||
)
|
||||
|
||||
return Boto3CredentialsInfo(
|
||||
credentials=credentials,
|
||||
aws_region_name=aws_region_name,
|
||||
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
|
||||
)
|
||||
|
|
|
@ -484,73 +484,6 @@ class AmazonMistralConfig:
|
|||
}
|
||||
|
||||
|
||||
class AmazonStabilityConfig:
|
||||
"""
|
||||
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
|
||||
|
||||
Supported Params for the Amazon / Stable Diffusion models:
|
||||
|
||||
- `cfg_scale` (integer): Default `7`. Between [ 0 .. 35 ]. How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)
|
||||
|
||||
- `seed` (float): Default: `0`. Between [ 0 .. 4294967295 ]. Random noise seed (omit this option or use 0 for a random seed)
|
||||
|
||||
- `steps` (array of strings): Default `30`. Between [ 10 .. 50 ]. Number of diffusion steps to run.
|
||||
|
||||
- `width` (integer): Default: `512`. multiple of 64 >= 128. Width of the image to generate, in pixels, in an increment divible by 64.
|
||||
Engine-specific dimension validation:
|
||||
|
||||
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
|
||||
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
|
||||
- SDXL v1.0: same as SDXL v0.9
|
||||
- SD v1.6: must be between 320x320 and 1536x1536
|
||||
|
||||
- `height` (integer): Default: `512`. multiple of 64 >= 128. Height of the image to generate, in pixels, in an increment divible by 64.
|
||||
Engine-specific dimension validation:
|
||||
|
||||
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
|
||||
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
|
||||
- SDXL v1.0: same as SDXL v0.9
|
||||
- SD v1.6: must be between 320x320 and 1536x1536
|
||||
"""
|
||||
|
||||
cfg_scale: Optional[int] = None
|
||||
seed: Optional[float] = None
|
||||
steps: Optional[List[str]] = None
|
||||
width: Optional[int] = None
|
||||
height: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cfg_scale: Optional[int] = None,
|
||||
seed: Optional[float] = None,
|
||||
steps: Optional[List[str]] = None,
|
||||
width: Optional[int] = None,
|
||||
height: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
|
||||
def add_custom_header(headers):
|
||||
"""Closure to capture the headers and add them."""
|
||||
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
import types
|
||||
from typing import List, Optional
|
||||
|
||||
|
||||
class AmazonStabilityConfig:
|
||||
"""
|
||||
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
|
||||
|
||||
Supported Params for the Amazon / Stable Diffusion models:
|
||||
|
||||
- `cfg_scale` (integer): Default `7`. Between [ 0 .. 35 ]. How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)
|
||||
|
||||
- `seed` (float): Default: `0`. Between [ 0 .. 4294967295 ]. Random noise seed (omit this option or use 0 for a random seed)
|
||||
|
||||
- `steps` (array of strings): Default `30`. Between [ 10 .. 50 ]. Number of diffusion steps to run.
|
||||
|
||||
- `width` (integer): Default: `512`. multiple of 64 >= 128. Width of the image to generate, in pixels, in an increment divible by 64.
|
||||
Engine-specific dimension validation:
|
||||
|
||||
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
|
||||
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
|
||||
- SDXL v1.0: same as SDXL v0.9
|
||||
- SD v1.6: must be between 320x320 and 1536x1536
|
||||
|
||||
- `height` (integer): Default: `512`. multiple of 64 >= 128. Height of the image to generate, in pixels, in an increment divible by 64.
|
||||
Engine-specific dimension validation:
|
||||
|
||||
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
|
||||
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
|
||||
- SDXL v1.0: same as SDXL v0.9
|
||||
- SD v1.6: must be between 320x320 and 1536x1536
|
||||
"""
|
||||
|
||||
cfg_scale: Optional[int] = None
|
||||
seed: Optional[float] = None
|
||||
steps: Optional[List[str]] = None
|
||||
width: Optional[int] = None
|
||||
height: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cfg_scale: Optional[int] = None,
|
||||
seed: Optional[float] = None,
|
||||
steps: Optional[List[str]] = None,
|
||||
width: Optional[int] = None,
|
||||
height: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
275
litellm/llms/bedrock/image/image_handler.py
Normal file
275
litellm/llms/bedrock/image/image_handler.py
Normal file
|
@ -0,0 +1,275 @@
|
|||
import copy
|
||||
import json
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
from openai.types.image import Image
|
||||
from pydantic import BaseModel
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LitellmLogging
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
_get_httpx_client,
|
||||
get_async_httpx_client,
|
||||
)
|
||||
from litellm.types.utils import ImageResponse
|
||||
|
||||
from ...base_aws_llm import BaseAWSLLM
|
||||
from ..common_utils import BedrockError
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from botocore.awsrequest import AWSPreparedRequest
|
||||
else:
|
||||
AWSPreparedRequest = Any
|
||||
|
||||
|
||||
class BedrockImagePreparedRequest(BaseModel):
|
||||
"""
|
||||
Internal/Helper class for preparing the request for bedrock image generation
|
||||
"""
|
||||
|
||||
endpoint_url: str
|
||||
prepped: AWSPreparedRequest
|
||||
body: bytes
|
||||
data: dict
|
||||
|
||||
|
||||
class BedrockImageGeneration(BaseAWSLLM):
|
||||
"""
|
||||
Bedrock Image Generation handler
|
||||
"""
|
||||
|
||||
def image_generation(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str,
|
||||
model_response: ImageResponse,
|
||||
optional_params: dict,
|
||||
logging_obj: LitellmLogging,
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
aimg_generation: bool = False,
|
||||
api_base: Optional[str] = None,
|
||||
extra_headers: Optional[dict] = None,
|
||||
):
|
||||
prepared_request = self._prepare_request(
|
||||
model=model,
|
||||
optional_params=optional_params,
|
||||
api_base=api_base,
|
||||
extra_headers=extra_headers,
|
||||
logging_obj=logging_obj,
|
||||
prompt=prompt,
|
||||
)
|
||||
|
||||
if aimg_generation is True:
|
||||
return self.async_image_generation(
|
||||
prepared_request=prepared_request,
|
||||
timeout=timeout,
|
||||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
prompt=prompt,
|
||||
model_response=model_response,
|
||||
)
|
||||
|
||||
client = _get_httpx_client()
|
||||
try:
|
||||
response = client.post(url=prepared_request.endpoint_url, headers=prepared_request.prepped.headers, data=prepared_request.body) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise BedrockError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise BedrockError(status_code=408, message="Timeout error occurred.")
|
||||
### FORMAT RESPONSE TO OPENAI FORMAT ###
|
||||
model_response = self._transform_response_dict_to_openai_response(
|
||||
model_response=model_response,
|
||||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
prompt=prompt,
|
||||
response=response,
|
||||
data=prepared_request.data,
|
||||
)
|
||||
return model_response
|
||||
|
||||
async def async_image_generation(
|
||||
self,
|
||||
prepared_request: BedrockImagePreparedRequest,
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
model: str,
|
||||
logging_obj: LitellmLogging,
|
||||
prompt: str,
|
||||
model_response: ImageResponse,
|
||||
) -> ImageResponse:
|
||||
"""
|
||||
Asynchronous handler for bedrock image generation
|
||||
|
||||
Awaits the response from the bedrock image generation endpoint
|
||||
"""
|
||||
async_client = get_async_httpx_client(
|
||||
llm_provider=litellm.LlmProviders.BEDROCK,
|
||||
params={"timeout": timeout},
|
||||
)
|
||||
|
||||
try:
|
||||
response = await async_client.post(url=prepared_request.endpoint_url, headers=prepared_request.prepped.headers, data=prepared_request.body) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise BedrockError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise BedrockError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
### FORMAT RESPONSE TO OPENAI FORMAT ###
|
||||
model_response = self._transform_response_dict_to_openai_response(
|
||||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
prompt=prompt,
|
||||
response=response,
|
||||
data=prepared_request.data,
|
||||
model_response=model_response,
|
||||
)
|
||||
return model_response
|
||||
|
||||
def _prepare_request(
|
||||
self,
|
||||
model: str,
|
||||
optional_params: dict,
|
||||
api_base: Optional[str],
|
||||
extra_headers: Optional[dict],
|
||||
logging_obj: LitellmLogging,
|
||||
prompt: str,
|
||||
) -> BedrockImagePreparedRequest:
|
||||
"""
|
||||
Prepare the request body, headers, and endpoint URL for the Bedrock Image Generation API
|
||||
|
||||
Args:
|
||||
model (str): The model to use for the image generation
|
||||
optional_params (dict): The optional parameters for the image generation
|
||||
api_base (Optional[str]): The base URL for the Bedrock API
|
||||
extra_headers (Optional[dict]): The extra headers to include in the request
|
||||
logging_obj (LitellmLogging): The logging object to use for logging
|
||||
prompt (str): The prompt to use for the image generation
|
||||
Returns:
|
||||
BedrockImagePreparedRequest: The prepared request object
|
||||
|
||||
The BedrockImagePreparedRequest contains:
|
||||
endpoint_url (str): The endpoint URL for the Bedrock Image Generation API
|
||||
prepped (httpx.Request): The prepared request object
|
||||
body (bytes): The request body
|
||||
"""
|
||||
try:
|
||||
import boto3
|
||||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
boto3_credentials_info = self._get_boto_credentials_from_optional_params(
|
||||
optional_params
|
||||
)
|
||||
|
||||
### SET RUNTIME ENDPOINT ###
|
||||
modelId = model
|
||||
_, proxy_endpoint_url = self.get_runtime_endpoint(
|
||||
api_base=api_base,
|
||||
aws_bedrock_runtime_endpoint=boto3_credentials_info.aws_bedrock_runtime_endpoint,
|
||||
aws_region_name=boto3_credentials_info.aws_region_name,
|
||||
)
|
||||
proxy_endpoint_url = f"{proxy_endpoint_url}/model/{modelId}/invoke"
|
||||
sigv4 = SigV4Auth(
|
||||
boto3_credentials_info.credentials,
|
||||
"bedrock",
|
||||
boto3_credentials_info.aws_region_name,
|
||||
)
|
||||
|
||||
# transform request
|
||||
### FORMAT IMAGE GENERATION INPUT ###
|
||||
provider = model.split(".")[0]
|
||||
inference_params = copy.deepcopy(optional_params)
|
||||
inference_params.pop(
|
||||
"user", None
|
||||
) # make sure user is not passed in for bedrock call
|
||||
data = {}
|
||||
if provider == "stability":
|
||||
prompt = prompt.replace(os.linesep, " ")
|
||||
## LOAD CONFIG
|
||||
config = litellm.AmazonStabilityConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in inference_params
|
||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
inference_params[k] = v
|
||||
data = {"text_prompts": [{"text": prompt, "weight": 1}], **inference_params}
|
||||
else:
|
||||
raise BedrockError(
|
||||
status_code=422, message=f"Unsupported model={model}, passed in"
|
||||
)
|
||||
|
||||
# Make POST Request
|
||||
body = json.dumps(data).encode("utf-8")
|
||||
|
||||
headers = {"Content-Type": "application/json"}
|
||||
if extra_headers is not None:
|
||||
headers = {"Content-Type": "application/json", **extra_headers}
|
||||
request = AWSRequest(
|
||||
method="POST", url=proxy_endpoint_url, data=body, headers=headers
|
||||
)
|
||||
sigv4.add_auth(request)
|
||||
if (
|
||||
extra_headers is not None and "Authorization" in extra_headers
|
||||
): # prevent sigv4 from overwriting the auth header
|
||||
request.headers["Authorization"] = extra_headers["Authorization"]
|
||||
prepped = request.prepare()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": proxy_endpoint_url,
|
||||
"headers": prepped.headers,
|
||||
},
|
||||
)
|
||||
return BedrockImagePreparedRequest(
|
||||
endpoint_url=proxy_endpoint_url,
|
||||
prepped=prepped,
|
||||
body=body,
|
||||
data=data,
|
||||
)
|
||||
|
||||
def _transform_response_dict_to_openai_response(
|
||||
self,
|
||||
model_response: ImageResponse,
|
||||
model: str,
|
||||
logging_obj: LitellmLogging,
|
||||
prompt: str,
|
||||
response: httpx.Response,
|
||||
data: dict,
|
||||
) -> ImageResponse:
|
||||
"""
|
||||
Transforms the Image Generation response from Bedrock to OpenAI format
|
||||
"""
|
||||
|
||||
## LOGGING
|
||||
if logging_obj is not None:
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
verbose_logger.debug("raw model_response: %s", response.text)
|
||||
response_dict = response.json()
|
||||
if response_dict is None:
|
||||
raise ValueError("Error in response object format, got None")
|
||||
|
||||
image_list: List[Image] = []
|
||||
for artifact in response_dict["artifacts"]:
|
||||
_image = Image(b64_json=artifact["base64"])
|
||||
image_list.append(_image)
|
||||
|
||||
model_response.data = image_list
|
||||
|
||||
return model_response
|
|
@ -0,0 +1,73 @@
|
|||
import copy
|
||||
import os
|
||||
import types
|
||||
from typing import Any, Dict, List, Optional, TypedDict, Union
|
||||
|
||||
import litellm
|
||||
|
||||
|
||||
class AmazonStability1Config:
|
||||
"""
|
||||
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
|
||||
|
||||
Supported Params for the Amazon / Stable Diffusion models:
|
||||
|
||||
- `cfg_scale` (integer): Default `7`. Between [ 0 .. 35 ]. How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)
|
||||
|
||||
- `seed` (float): Default: `0`. Between [ 0 .. 4294967295 ]. Random noise seed (omit this option or use 0 for a random seed)
|
||||
|
||||
- `steps` (array of strings): Default `30`. Between [ 10 .. 50 ]. Number of diffusion steps to run.
|
||||
|
||||
- `width` (integer): Default: `512`. multiple of 64 >= 128. Width of the image to generate, in pixels, in an increment divible by 64.
|
||||
Engine-specific dimension validation:
|
||||
|
||||
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
|
||||
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
|
||||
- SDXL v1.0: same as SDXL v0.9
|
||||
- SD v1.6: must be between 320x320 and 1536x1536
|
||||
|
||||
- `height` (integer): Default: `512`. multiple of 64 >= 128. Height of the image to generate, in pixels, in an increment divible by 64.
|
||||
Engine-specific dimension validation:
|
||||
|
||||
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
|
||||
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
|
||||
- SDXL v1.0: same as SDXL v0.9
|
||||
- SD v1.6: must be between 320x320 and 1536x1536
|
||||
"""
|
||||
|
||||
cfg_scale: Optional[int] = None
|
||||
seed: Optional[float] = None
|
||||
steps: Optional[List[str]] = None
|
||||
width: Optional[int] = None
|
||||
height: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cfg_scale: Optional[int] = None,
|
||||
seed: Optional[float] = None,
|
||||
steps: Optional[List[str]] = None,
|
||||
width: Optional[int] = None,
|
||||
height: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
|
@ -1,127 +0,0 @@
|
|||
"""
|
||||
Handles image gen calls to Bedrock's `/invoke` endpoint
|
||||
"""
|
||||
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
from typing import Any, List
|
||||
|
||||
from openai.types.image import Image
|
||||
|
||||
import litellm
|
||||
from litellm.types.utils import ImageResponse
|
||||
|
||||
from .common_utils import BedrockError, init_bedrock_client
|
||||
|
||||
|
||||
def image_generation(
|
||||
model: str,
|
||||
prompt: str,
|
||||
model_response: ImageResponse,
|
||||
optional_params: dict,
|
||||
logging_obj: Any,
|
||||
timeout=None,
|
||||
aimg_generation=False,
|
||||
):
|
||||
"""
|
||||
Bedrock Image Gen endpoint support
|
||||
"""
|
||||
### BOTO3 INIT ###
|
||||
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
||||
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||
aws_region_name = optional_params.pop("aws_region_name", None)
|
||||
aws_role_name = optional_params.pop("aws_role_name", None)
|
||||
aws_session_name = optional_params.pop("aws_session_name", None)
|
||||
aws_bedrock_runtime_endpoint = optional_params.pop(
|
||||
"aws_bedrock_runtime_endpoint", None
|
||||
)
|
||||
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
||||
|
||||
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
|
||||
client = init_bedrock_client(
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
aws_region_name=aws_region_name,
|
||||
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
|
||||
aws_web_identity_token=aws_web_identity_token,
|
||||
aws_role_name=aws_role_name,
|
||||
aws_session_name=aws_session_name,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
### FORMAT IMAGE GENERATION INPUT ###
|
||||
modelId = model
|
||||
provider = model.split(".")[0]
|
||||
inference_params = copy.deepcopy(optional_params)
|
||||
inference_params.pop(
|
||||
"user", None
|
||||
) # make sure user is not passed in for bedrock call
|
||||
data = {}
|
||||
if provider == "stability":
|
||||
prompt = prompt.replace(os.linesep, " ")
|
||||
## LOAD CONFIG
|
||||
config = litellm.AmazonStabilityConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in inference_params
|
||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
inference_params[k] = v
|
||||
data = {"text_prompts": [{"text": prompt, "weight": 1}], **inference_params}
|
||||
else:
|
||||
raise BedrockError(
|
||||
status_code=422, message=f"Unsupported model={model}, passed in"
|
||||
)
|
||||
|
||||
body = json.dumps(data).encode("utf-8")
|
||||
## LOGGING
|
||||
request_str = f"""
|
||||
response = client.invoke_model(
|
||||
body={body}, # type: ignore
|
||||
modelId={modelId},
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)""" # type: ignore
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key="", # boto3 is used for init.
|
||||
additional_args={
|
||||
"complete_input_dict": {"model": modelId, "texts": prompt},
|
||||
"request_str": request_str,
|
||||
},
|
||||
)
|
||||
try:
|
||||
response = client.invoke_model(
|
||||
body=body,
|
||||
modelId=modelId,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)
|
||||
response_body = json.loads(response.get("body").read())
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": data},
|
||||
original_response=json.dumps(response_body),
|
||||
)
|
||||
except Exception as e:
|
||||
raise BedrockError(
|
||||
message=f"Embedding Error with model {model}: {e}", status_code=500
|
||||
)
|
||||
|
||||
### FORMAT RESPONSE TO OPENAI FORMAT ###
|
||||
if response_body is None:
|
||||
raise Exception("Error in response object format")
|
||||
|
||||
if model_response is None:
|
||||
model_response = ImageResponse()
|
||||
|
||||
image_list: List[Image] = []
|
||||
for artifact in response_body["artifacts"]:
|
||||
_image = Image(b64_json=artifact["base64"])
|
||||
image_list.append(_image)
|
||||
|
||||
model_response.data = image_list
|
||||
return model_response
|
|
@ -108,9 +108,9 @@ from .llms.azure_text import AzureTextCompletion
|
|||
from .llms.AzureOpenAI.audio_transcriptions import AzureAudioTranscription
|
||||
from .llms.AzureOpenAI.azure import AzureChatCompletion, _check_dynamic_azure_params
|
||||
from .llms.AzureOpenAI.chat.o1_handler import AzureOpenAIO1ChatCompletion
|
||||
from .llms.bedrock import image_generation as bedrock_image_generation # type: ignore
|
||||
from .llms.bedrock.chat import BedrockConverseLLM, BedrockLLM
|
||||
from .llms.bedrock.embed.embedding import BedrockEmbedding
|
||||
from .llms.bedrock.image.image_handler import BedrockImageGeneration
|
||||
from .llms.cohere import chat as cohere_chat
|
||||
from .llms.cohere import completion as cohere_completion # type: ignore
|
||||
from .llms.cohere.embed import handler as cohere_embed
|
||||
|
@ -214,6 +214,7 @@ triton_chat_completions = TritonChatCompletion()
|
|||
bedrock_chat_completion = BedrockLLM()
|
||||
bedrock_converse_chat_completion = BedrockConverseLLM()
|
||||
bedrock_embedding = BedrockEmbedding()
|
||||
bedrock_image_generation = BedrockImageGeneration()
|
||||
vertex_chat_completion = VertexLLM()
|
||||
vertex_embedding = VertexEmbedding()
|
||||
vertex_multimodal_embedding = VertexMultimodalEmbedding()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue