forked from phoenix/litellm-mirror
fix(utils.py): return openai streaming prompt caching tokens (#6051)
* fix(utils.py): return openai streaming prompt caching tokens Closes https://github.com/BerriAI/litellm/issues/6038 * fix(main.py): fix error in finish_reason updates
This commit is contained in:
parent
04ae095860
commit
09f0c09ba4
5 changed files with 91 additions and 10 deletions
|
@ -144,8 +144,10 @@ from .types.llms.openai import HttpxBinaryResponseContent
|
|||
from .types.utils import (
|
||||
AdapterCompletionStreamWrapper,
|
||||
ChatCompletionMessageToolCall,
|
||||
CompletionTokensDetails,
|
||||
FileTypes,
|
||||
HiddenParams,
|
||||
PromptTokensDetails,
|
||||
all_litellm_params,
|
||||
)
|
||||
|
||||
|
@ -5481,7 +5483,13 @@ def stream_chunk_builder(
|
|||
chunks=chunks, messages=messages
|
||||
)
|
||||
role = chunks[0]["choices"][0]["delta"]["role"]
|
||||
finish_reason = chunks[-1]["choices"][0]["finish_reason"]
|
||||
finish_reason = "stop"
|
||||
for chunk in chunks:
|
||||
if "choices" in chunk and len(chunk["choices"]) > 0:
|
||||
if hasattr(chunk["choices"][0], "finish_reason"):
|
||||
finish_reason = chunk["choices"][0].finish_reason
|
||||
elif "finish_reason" in chunk["choices"][0]:
|
||||
finish_reason = chunk["choices"][0]["finish_reason"]
|
||||
|
||||
# Initialize the response dictionary
|
||||
response = {
|
||||
|
@ -5512,7 +5520,8 @@ def stream_chunk_builder(
|
|||
tool_call_chunks = [
|
||||
chunk
|
||||
for chunk in chunks
|
||||
if "tool_calls" in chunk["choices"][0]["delta"]
|
||||
if len(chunk["choices"]) > 0
|
||||
and "tool_calls" in chunk["choices"][0]["delta"]
|
||||
and chunk["choices"][0]["delta"]["tool_calls"] is not None
|
||||
]
|
||||
|
||||
|
@ -5590,7 +5599,8 @@ def stream_chunk_builder(
|
|||
function_call_chunks = [
|
||||
chunk
|
||||
for chunk in chunks
|
||||
if "function_call" in chunk["choices"][0]["delta"]
|
||||
if len(chunk["choices"]) > 0
|
||||
and "function_call" in chunk["choices"][0]["delta"]
|
||||
and chunk["choices"][0]["delta"]["function_call"] is not None
|
||||
]
|
||||
|
||||
|
@ -5625,7 +5635,8 @@ def stream_chunk_builder(
|
|||
content_chunks = [
|
||||
chunk
|
||||
for chunk in chunks
|
||||
if "content" in chunk["choices"][0]["delta"]
|
||||
if len(chunk["choices"]) > 0
|
||||
and "content" in chunk["choices"][0]["delta"]
|
||||
and chunk["choices"][0]["delta"]["content"] is not None
|
||||
]
|
||||
|
||||
|
@ -5657,6 +5668,8 @@ def stream_chunk_builder(
|
|||
## anthropic prompt caching information ##
|
||||
cache_creation_input_tokens: Optional[int] = None
|
||||
cache_read_input_tokens: Optional[int] = None
|
||||
completion_tokens_details: Optional[CompletionTokensDetails] = None
|
||||
prompt_tokens_details: Optional[PromptTokensDetails] = None
|
||||
for chunk in chunks:
|
||||
usage_chunk: Optional[Usage] = None
|
||||
if "usage" in chunk:
|
||||
|
@ -5674,6 +5687,26 @@ def stream_chunk_builder(
|
|||
)
|
||||
if "cache_read_input_tokens" in usage_chunk:
|
||||
cache_read_input_tokens = usage_chunk.get("cache_read_input_tokens")
|
||||
if hasattr(usage_chunk, "completion_tokens_details"):
|
||||
if isinstance(usage_chunk.completion_tokens_details, dict):
|
||||
completion_tokens_details = CompletionTokensDetails(
|
||||
**usage_chunk.completion_tokens_details
|
||||
)
|
||||
elif isinstance(
|
||||
usage_chunk.completion_tokens_details, CompletionTokensDetails
|
||||
):
|
||||
completion_tokens_details = (
|
||||
usage_chunk.completion_tokens_details
|
||||
)
|
||||
if hasattr(usage_chunk, "prompt_tokens_details"):
|
||||
if isinstance(usage_chunk.prompt_tokens_details, dict):
|
||||
prompt_tokens_details = PromptTokensDetails(
|
||||
**usage_chunk.prompt_tokens_details
|
||||
)
|
||||
elif isinstance(
|
||||
usage_chunk.prompt_tokens_details, PromptTokensDetails
|
||||
):
|
||||
prompt_tokens_details = usage_chunk.prompt_tokens_details
|
||||
|
||||
try:
|
||||
response["usage"]["prompt_tokens"] = prompt_tokens or token_counter(
|
||||
|
@ -5700,6 +5733,11 @@ def stream_chunk_builder(
|
|||
if cache_read_input_tokens is not None:
|
||||
response["usage"]["cache_read_input_tokens"] = cache_read_input_tokens
|
||||
|
||||
if completion_tokens_details is not None:
|
||||
response["usage"]["completion_tokens_details"] = completion_tokens_details
|
||||
if prompt_tokens_details is not None:
|
||||
response["usage"]["prompt_tokens_details"] = prompt_tokens_details
|
||||
|
||||
return convert_to_model_response_object(
|
||||
response_object=response,
|
||||
model_response_object=model_response,
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
model_list:
|
||||
- model_name: gpt-4o-realtime-audio
|
||||
- model_name: gpt-4o
|
||||
litellm_params:
|
||||
model: azure/gpt-4o-realtime-preview
|
||||
api_key: os.environ/AZURE_SWEDEN_API_KEY
|
||||
|
|
|
@ -11,7 +11,7 @@ from openai.types.completion_usage import (
|
|||
CompletionUsage,
|
||||
PromptTokensDetails,
|
||||
)
|
||||
from pydantic import ConfigDict, PrivateAttr
|
||||
from pydantic import BaseModel, ConfigDict, PrivateAttr
|
||||
from typing_extensions import Callable, Dict, Required, TypedDict, override
|
||||
|
||||
from ..litellm_core_utils.core_helpers import map_finish_reason
|
||||
|
@ -677,6 +677,8 @@ class ModelResponse(OpenAIObject):
|
|||
_new_choice = choice
|
||||
elif isinstance(choice, dict):
|
||||
_new_choice = StreamingChoices(**choice)
|
||||
elif isinstance(choice, BaseModel):
|
||||
_new_choice = StreamingChoices(**choice.model_dump())
|
||||
new_choices.append(_new_choice)
|
||||
choices = new_choices
|
||||
else:
|
||||
|
|
|
@ -7813,9 +7813,7 @@ class CustomStreamWrapper:
|
|||
)
|
||||
elif isinstance(response_obj["usage"], BaseModel):
|
||||
model_response.usage = litellm.Usage(
|
||||
prompt_tokens=response_obj["usage"].prompt_tokens,
|
||||
completion_tokens=response_obj["usage"].completion_tokens,
|
||||
total_tokens=response_obj["usage"].total_tokens,
|
||||
**response_obj["usage"].model_dump()
|
||||
)
|
||||
|
||||
model_response.model = self.model
|
||||
|
|
|
@ -5,6 +5,7 @@ import time
|
|||
import traceback
|
||||
|
||||
import pytest
|
||||
from typing import List
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
|
@ -12,7 +13,6 @@ sys.path.insert(
|
|||
import os
|
||||
|
||||
import dotenv
|
||||
import pytest
|
||||
from openai import OpenAI
|
||||
|
||||
import litellm
|
||||
|
@ -622,3 +622,46 @@ def test_stream_chunk_builder_multiple_tool_calls():
|
|||
assert (
|
||||
expected_response.choices == response.choices
|
||||
), "\nGot={}\n, Expected={}\n".format(response.choices, expected_response.choices)
|
||||
|
||||
|
||||
def test_stream_chunk_builder_openai_prompt_caching():
|
||||
from openai import OpenAI
|
||||
from pydantic import BaseModel
|
||||
|
||||
client = OpenAI(
|
||||
# This is the default and can be omitted
|
||||
api_key=os.getenv("OPENAI_API_KEY"),
|
||||
)
|
||||
|
||||
chat_completion = client.chat.completions.create(
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Say this is a test",
|
||||
}
|
||||
],
|
||||
model="gpt-3.5-turbo",
|
||||
stream=True,
|
||||
stream_options={"include_usage": True},
|
||||
)
|
||||
chunks: List[litellm.ModelResponse] = []
|
||||
usage_obj = None
|
||||
for chunk in chat_completion:
|
||||
chunks.append(litellm.ModelResponse(**chunk.model_dump(), stream=True))
|
||||
|
||||
print(f"chunks: {chunks}")
|
||||
|
||||
usage_obj: litellm.Usage = chunks[-1].usage # type: ignore
|
||||
|
||||
response = stream_chunk_builder(chunks=chunks)
|
||||
print(f"response: {response}")
|
||||
print(f"response usage: {response.usage}")
|
||||
for k, v in usage_obj.model_dump().items():
|
||||
print(k, v)
|
||||
response_usage_value = getattr(response.usage, k) # type: ignore
|
||||
print(f"response_usage_value: {response_usage_value}")
|
||||
print(f"type: {type(response_usage_value)}")
|
||||
if isinstance(response_usage_value, BaseModel):
|
||||
assert response_usage_value.model_dump() == v
|
||||
else:
|
||||
assert response_usage_value == v
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue