Merge pull request #3682 from BerriAI/litellm_token_counter_endpoint

[Feat] `token_counter` endpoint
This commit is contained in:
Ishaan Jaff 2024-05-16 13:39:23 -07:00 committed by GitHub
commit 0a816b2c45
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 214 additions and 2 deletions

View file

@ -89,6 +89,8 @@ class LiteLLMRoutes(enum.Enum):
"/v1/models", "/v1/models",
] ]
llm_utils_routes: List = ["utils/token_counter"]
info_routes: List = [ info_routes: List = [
"/key/info", "/key/info",
"/team/info", "/team/info",
@ -1011,3 +1013,16 @@ class LiteLLM_ErrorLogs(LiteLLMBase):
class LiteLLM_SpendLogs_ResponseObject(LiteLLMBase): class LiteLLM_SpendLogs_ResponseObject(LiteLLMBase):
response: Optional[List[Union[LiteLLM_SpendLogs, Any]]] = None response: Optional[List[Union[LiteLLM_SpendLogs, Any]]] = None
class TokenCountRequest(LiteLLMBase):
model: str
prompt: Optional[str] = None
messages: Optional[List[dict]] = None
class TokenCountResponse(LiteLLMBase):
total_tokens: int
request_model: str
model_used: str
tokenizer_type: str

View file

@ -4777,6 +4777,56 @@ async def moderations(
) )
@router.post(
"/utils/token_counter",
tags=["llm utils"],
dependencies=[Depends(user_api_key_auth)],
response_model=TokenCountResponse,
)
async def token_counter(request: TokenCountRequest):
""" """
from litellm import token_counter
global llm_router
prompt = request.prompt
messages = request.messages
if prompt is None and messages is None:
raise HTTPException(
status_code=400, detail="prompt or messages must be provided"
)
deployment = None
litellm_model_name = None
if llm_router is not None:
# get 1 deployment corresponding to the model
for _model in llm_router.model_list:
if _model["model_name"] == request.model:
deployment = _model
break
if deployment is not None:
litellm_model_name = deployment.get("litellm_params", {}).get("model")
# remove the custom_llm_provider_prefix in the litellm_model_name
if "/" in litellm_model_name:
litellm_model_name = litellm_model_name.split("/", 1)[1]
model_to_use = (
litellm_model_name or request.model
) # use litellm model name, if it's not avalable then fallback to request.model
total_tokens, tokenizer_used = token_counter(
model=model_to_use,
text=prompt,
messages=messages,
return_tokenizer_used=True,
)
return TokenCountResponse(
total_tokens=total_tokens,
request_model=request.model,
model_used=model_to_use,
tokenizer_type=tokenizer_used,
)
#### KEY MANAGEMENT #### #### KEY MANAGEMENT ####

View file

@ -0,0 +1,138 @@
# Test the following scenarios:
# 1. Generate a Key, and use it to make a call
import sys, os
import traceback
from dotenv import load_dotenv
from fastapi import Request
from datetime import datetime
load_dotenv()
import os, io, time
# this file is to test litellm/proxy
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest, logging, asyncio
import litellm, asyncio
from litellm.proxy.proxy_server import token_counter
from litellm.proxy.utils import PrismaClient, ProxyLogging, hash_token, update_spend
from litellm._logging import verbose_proxy_logger
verbose_proxy_logger.setLevel(level=logging.DEBUG)
from litellm.proxy._types import TokenCountRequest, TokenCountResponse
from litellm import Router
@pytest.mark.asyncio
async def test_vLLM_token_counting():
"""
Test Token counter for vLLM models
- User passes model="special-alias"
- token_counter should infer that special_alias -> maps to wolfram/miquliz-120b-v2.0
-> token counter should use hugging face tokenizer
"""
llm_router = Router(
model_list=[
{
"model_name": "special-alias",
"litellm_params": {
"model": "openai/wolfram/miquliz-120b-v2.0",
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
},
}
]
)
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
response = await token_counter(
request=TokenCountRequest(
model="special-alias",
messages=[{"role": "user", "content": "hello"}],
)
)
print("response: ", response)
assert (
response.tokenizer_type == "huggingface_tokenizer"
) # SHOULD use the hugging face tokenizer
assert response.model_used == "wolfram/miquliz-120b-v2.0"
@pytest.mark.asyncio
async def test_token_counting_model_not_in_model_list():
"""
Test Token counter - when a model is not in model_list
-> should use the default OpenAI tokenizer
"""
llm_router = Router(
model_list=[
{
"model_name": "gpt-4",
"litellm_params": {
"model": "gpt-4",
},
}
]
)
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
response = await token_counter(
request=TokenCountRequest(
model="special-alias",
messages=[{"role": "user", "content": "hello"}],
)
)
print("response: ", response)
assert (
response.tokenizer_type == "openai_tokenizer"
) # SHOULD use the OpenAI tokenizer
assert response.model_used == "special-alias"
@pytest.mark.asyncio
async def test_gpt_token_counting():
"""
Test Token counter
-> should work for gpt-4
"""
llm_router = Router(
model_list=[
{
"model_name": "gpt-4",
"litellm_params": {
"model": "gpt-4",
},
}
]
)
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
response = await token_counter(
request=TokenCountRequest(
model="gpt-4",
messages=[{"role": "user", "content": "hello"}],
)
)
print("response: ", response)
assert (
response.tokenizer_type == "openai_tokenizer"
) # SHOULD use the OpenAI tokenizer
assert response.request_model == "gpt-4"

View file

@ -3880,6 +3880,11 @@ def _select_tokenizer(model: str):
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
# default - tiktoken # default - tiktoken
else: else:
tokenizer = None
try:
tokenizer = Tokenizer.from_pretrained(model)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
except:
return {"type": "openai_tokenizer", "tokenizer": encoding} return {"type": "openai_tokenizer", "tokenizer": encoding}
@ -4117,6 +4122,7 @@ def token_counter(
text: Optional[Union[str, List[str]]] = None, text: Optional[Union[str, List[str]]] = None,
messages: Optional[List] = None, messages: Optional[List] = None,
count_response_tokens: Optional[bool] = False, count_response_tokens: Optional[bool] = False,
return_tokenizer_used: Optional[bool] = False,
): ):
""" """
Count the number of tokens in a given text using a specified model. Count the number of tokens in a given text using a specified model.
@ -4209,7 +4215,10 @@ def token_counter(
) )
else: else:
num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore
_tokenizer_type = tokenizer_json["type"]
if return_tokenizer_used:
# used by litellm proxy server -> POST /utils/token_counter
return num_tokens, _tokenizer_type
return num_tokens return num_tokens