forked from phoenix/litellm-mirror
(docs) add parallel function calling to azure.md
This commit is contained in:
parent
3e70d2149e
commit
0b171bb810
1 changed files with 66 additions and 4 deletions
|
@ -80,7 +80,8 @@ response = litellm.completion(
|
|||
| gpt-3.5-turbo-16k | `completion('azure/<your deployment name>', messages)` |
|
||||
| gpt-3.5-turbo-16k-0613 | `completion('azure/<your deployment name>', messages)`
|
||||
|
||||
## Azure API Load-Balancing
|
||||
## Advanced
|
||||
### Azure API Load-Balancing
|
||||
|
||||
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.
|
||||
|
||||
|
@ -88,7 +89,7 @@ Use this if you're trying to load-balance across multiple Azure/OpenAI deploymen
|
|||
|
||||
In production, [Router connects to a Redis Cache](#redis-queue) to track usage across multiple deployments.
|
||||
|
||||
### Quick Start
|
||||
#### Quick Start
|
||||
|
||||
```python
|
||||
pip install litellm
|
||||
|
@ -136,7 +137,7 @@ response = router.completion(model="gpt-3.5-turbo",
|
|||
print(response)
|
||||
```
|
||||
|
||||
### Redis Queue
|
||||
#### Redis Queue
|
||||
|
||||
```python
|
||||
router = Router(model_list=model_list,
|
||||
|
@ -147,7 +148,68 @@ router = Router(model_list=model_list,
|
|||
print(response)
|
||||
```
|
||||
|
||||
## Azure Active Directory Tokens - Microsoft Entra ID
|
||||
|
||||
### Parallel Function calling
|
||||
See a detailed walthrough of parallel function calling with litellm [here](https://docs.litellm.ai/docs/completion/function_call)
|
||||
```python
|
||||
# set Azure env variables
|
||||
import os
|
||||
os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request
|
||||
os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/"
|
||||
os.environ['AZURE_API_VERSION'] = "2023-07-01-preview"
|
||||
|
||||
import litellm
|
||||
import json
|
||||
# Example dummy function hard coded to return the same weather
|
||||
# In production, this could be your backend API or an external API
|
||||
def get_current_weather(location, unit="fahrenheit"):
|
||||
"""Get the current weather in a given location"""
|
||||
if "tokyo" in location.lower():
|
||||
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
|
||||
elif "san francisco" in location.lower():
|
||||
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
|
||||
elif "paris" in location.lower():
|
||||
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
|
||||
else:
|
||||
return json.dumps({"location": location, "temperature": "unknown"})
|
||||
|
||||
## Step 1: send the conversation and available functions to the model
|
||||
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
response = litellm.completion(
|
||||
model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name>
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
)
|
||||
print("\nLLM Response1:\n", response)
|
||||
response_message = response.choices[0].message
|
||||
tool_calls = response.choices[0].message.tool_calls
|
||||
print("\nTool Choice:\n", tool_calls)
|
||||
```
|
||||
|
||||
|
||||
### Authentication with Azure Active Directory Tokens (Microsoft Entra ID)
|
||||
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
|
||||
|
||||
Step 1 - Download Azure CLI
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue