(docs) add parallel function calling to azure.md

This commit is contained in:
ishaan-jaff 2023-11-18 14:49:57 -08:00
parent 3e70d2149e
commit 0b171bb810

View file

@ -80,7 +80,8 @@ response = litellm.completion(
| gpt-3.5-turbo-16k | `completion('azure/<your deployment name>', messages)` |
| gpt-3.5-turbo-16k-0613 | `completion('azure/<your deployment name>', messages)`
## Azure API Load-Balancing
## Advanced
### Azure API Load-Balancing
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.
@ -88,7 +89,7 @@ Use this if you're trying to load-balance across multiple Azure/OpenAI deploymen
In production, [Router connects to a Redis Cache](#redis-queue) to track usage across multiple deployments.
### Quick Start
#### Quick Start
```python
pip install litellm
@ -136,7 +137,7 @@ response = router.completion(model="gpt-3.5-turbo",
print(response)
```
### Redis Queue
#### Redis Queue
```python
router = Router(model_list=model_list,
@ -147,7 +148,68 @@ router = Router(model_list=model_list,
print(response)
```
## Azure Active Directory Tokens - Microsoft Entra ID
### Parallel Function calling
See a detailed walthrough of parallel function calling with litellm [here](https://docs.litellm.ai/docs/completion/function_call)
```python
# set Azure env variables
import os
os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request
os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/"
os.environ['AZURE_API_VERSION'] = "2023-07-01-preview"
import litellm
import json
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
## Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name>
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
print("\nTool Choice:\n", tool_calls)
```
### Authentication with Azure Active Directory Tokens (Microsoft Entra ID)
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
Step 1 - Download Azure CLI