forked from phoenix/litellm-mirror
(docs) add parallel function calling to azure.md
This commit is contained in:
parent
3e70d2149e
commit
0b171bb810
1 changed files with 66 additions and 4 deletions
|
@ -80,7 +80,8 @@ response = litellm.completion(
|
||||||
| gpt-3.5-turbo-16k | `completion('azure/<your deployment name>', messages)` |
|
| gpt-3.5-turbo-16k | `completion('azure/<your deployment name>', messages)` |
|
||||||
| gpt-3.5-turbo-16k-0613 | `completion('azure/<your deployment name>', messages)`
|
| gpt-3.5-turbo-16k-0613 | `completion('azure/<your deployment name>', messages)`
|
||||||
|
|
||||||
## Azure API Load-Balancing
|
## Advanced
|
||||||
|
### Azure API Load-Balancing
|
||||||
|
|
||||||
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.
|
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.
|
||||||
|
|
||||||
|
@ -88,7 +89,7 @@ Use this if you're trying to load-balance across multiple Azure/OpenAI deploymen
|
||||||
|
|
||||||
In production, [Router connects to a Redis Cache](#redis-queue) to track usage across multiple deployments.
|
In production, [Router connects to a Redis Cache](#redis-queue) to track usage across multiple deployments.
|
||||||
|
|
||||||
### Quick Start
|
#### Quick Start
|
||||||
|
|
||||||
```python
|
```python
|
||||||
pip install litellm
|
pip install litellm
|
||||||
|
@ -136,7 +137,7 @@ response = router.completion(model="gpt-3.5-turbo",
|
||||||
print(response)
|
print(response)
|
||||||
```
|
```
|
||||||
|
|
||||||
### Redis Queue
|
#### Redis Queue
|
||||||
|
|
||||||
```python
|
```python
|
||||||
router = Router(model_list=model_list,
|
router = Router(model_list=model_list,
|
||||||
|
@ -147,7 +148,68 @@ router = Router(model_list=model_list,
|
||||||
print(response)
|
print(response)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Azure Active Directory Tokens - Microsoft Entra ID
|
|
||||||
|
### Parallel Function calling
|
||||||
|
See a detailed walthrough of parallel function calling with litellm [here](https://docs.litellm.ai/docs/completion/function_call)
|
||||||
|
```python
|
||||||
|
# set Azure env variables
|
||||||
|
import os
|
||||||
|
os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request
|
||||||
|
os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/"
|
||||||
|
os.environ['AZURE_API_VERSION'] = "2023-07-01-preview"
|
||||||
|
|
||||||
|
import litellm
|
||||||
|
import json
|
||||||
|
# Example dummy function hard coded to return the same weather
|
||||||
|
# In production, this could be your backend API or an external API
|
||||||
|
def get_current_weather(location, unit="fahrenheit"):
|
||||||
|
"""Get the current weather in a given location"""
|
||||||
|
if "tokyo" in location.lower():
|
||||||
|
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
|
||||||
|
elif "san francisco" in location.lower():
|
||||||
|
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
|
||||||
|
elif "paris" in location.lower():
|
||||||
|
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
|
||||||
|
else:
|
||||||
|
return json.dumps({"location": location, "temperature": "unknown"})
|
||||||
|
|
||||||
|
## Step 1: send the conversation and available functions to the model
|
||||||
|
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
|
||||||
|
tools = [
|
||||||
|
{
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "get_current_weather",
|
||||||
|
"description": "Get the current weather in a given location",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"location": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "The city and state, e.g. San Francisco, CA",
|
||||||
|
},
|
||||||
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||||
|
},
|
||||||
|
"required": ["location"],
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
response = litellm.completion(
|
||||||
|
model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name>
|
||||||
|
messages=messages,
|
||||||
|
tools=tools,
|
||||||
|
tool_choice="auto", # auto is default, but we'll be explicit
|
||||||
|
)
|
||||||
|
print("\nLLM Response1:\n", response)
|
||||||
|
response_message = response.choices[0].message
|
||||||
|
tool_calls = response.choices[0].message.tool_calls
|
||||||
|
print("\nTool Choice:\n", tool_calls)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### Authentication with Azure Active Directory Tokens (Microsoft Entra ID)
|
||||||
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
|
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
|
||||||
|
|
||||||
Step 1 - Download Azure CLI
|
Step 1 - Download Azure CLI
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue