feat(ui/time_to_first_token.tsx): add time to first token card to model metrics

This commit is contained in:
Krrish Dholakia 2024-05-22 18:09:53 -07:00
parent 3c0e9cb48e
commit 0f2c55dd81
4 changed files with 194 additions and 75 deletions

View file

@ -8565,6 +8565,102 @@ async def model_info_v2(
return {"data": all_models}
@router.get(
"/model/streaming_metrics",
description="View time to first token for models in spend logs",
tags=["model management"],
include_in_schema=False,
dependencies=[Depends(user_api_key_auth)],
)
async def model_streaming_metrics(
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
_selected_model_group: Optional[str] = None,
startTime: Optional[datetime] = None,
endTime: Optional[datetime] = None,
):
global prisma_client, llm_router
if prisma_client is None:
raise ProxyException(
message=CommonProxyErrors.db_not_connected_error.value,
type="internal_error",
param="None",
code=status.HTTP_500_INTERNAL_SERVER_ERROR,
)
startTime = startTime or datetime.now() - timedelta(days=7) # show over past week
endTime = endTime or datetime.now()
sql_query = """
SELECT
api_base,
model_group,
model,
DATE_TRUNC('day', "startTime")::DATE AS day,
AVG(EXTRACT(epoch FROM ("completionStartTime" - "startTime"))) AS time_to_first_token
FROM
"LiteLLM_SpendLogs"
WHERE
"startTime" BETWEEN $2::timestamp AND $3::timestamp
AND "model_group" = $1 AND "cache_hit" != 'True'
AND "completionStartTime" IS NOT NULL
AND "completionStartTime" != "endTime"
GROUP BY
api_base,
model_group,
model,
day
ORDER BY
time_to_first_token DESC;
"""
_all_api_bases = set()
db_response = await prisma_client.db.query_raw(
sql_query, _selected_model_group, startTime, endTime
)
_daily_entries: dict = {} # {"Jun 23": {"model1": 0.002, "model2": 0.003}}
if db_response is not None:
for model_data in db_response:
_api_base = model_data["api_base"]
_model = model_data["model"]
_day = model_data["day"]
time_to_first_token = model_data["time_to_first_token"]
if _day not in _daily_entries:
_daily_entries[_day] = {}
_combined_model_name = str(_model)
if "https://" in _api_base:
_combined_model_name = str(_api_base)
if "/openai/" in _combined_model_name:
_combined_model_name = _combined_model_name.split("/openai/")[0]
_all_api_bases.add(_combined_model_name)
_daily_entries[_day][_combined_model_name] = time_to_first_token
"""
each entry needs to be like this:
{
date: 'Jun 23',
'gpt-4-https://api.openai.com/v1/': 0.002,
'gpt-43-https://api.openai.com-12/v1/': 0.002,
}
"""
# convert daily entries to list of dicts
response: List[dict] = []
# sort daily entries by date
_daily_entries = dict(sorted(_daily_entries.items(), key=lambda item: item[0]))
for day in _daily_entries:
entry = {"date": str(day)}
for model_key, latency in _daily_entries[day].items():
entry[model_key] = latency
response.append(entry)
return {
"data": response,
"all_api_bases": list(_all_api_bases),
}
@router.get(
"/model/metrics",
description="View number of requests & avg latency per model on config.yaml",
@ -8592,6 +8688,7 @@ async def model_metrics(
sql_query = """
SELECT
api_base,
model_group,
model,
DATE_TRUNC('day', "startTime")::DATE AS day,
AVG(EXTRACT(epoch FROM ("endTime" - "startTime"))) / SUM(total_tokens) AS avg_latency_per_token
@ -8599,9 +8696,10 @@ async def model_metrics(
"LiteLLM_SpendLogs"
WHERE
"startTime" BETWEEN $2::timestamp AND $3::timestamp
AND "model" = $1 AND "cache_hit" != 'True'
AND "model_group" = $1 AND "cache_hit" != 'True'
GROUP BY
api_base,
model_group,
model,
day
HAVING
@ -8614,6 +8712,7 @@ async def model_metrics(
sql_query, _selected_model_group, startTime, endTime
)
_daily_entries: dict = {} # {"Jun 23": {"model1": 0.002, "model2": 0.003}}
if db_response is not None:
for model_data in db_response:
_api_base = model_data["api_base"]

View file

@ -43,6 +43,7 @@ import {
healthCheckCall,
modelUpdateCall,
modelMetricsCall,
streamingModelMetricsCall,
modelExceptionsCall,
modelMetricsSlowResponsesCall,
getCallbacksCall,
@ -259,6 +260,9 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
const [modelMetricsCategories, setModelMetricsCategories] = useState<any[]>(
[]
);
const [streamingModelMetrics, setStreamingModelMetrics] = useState<any[]>([]);
const [streamingModelMetricsCategories, setStreamingModelMetricsCategories] =
useState<any[]>([]);
const [modelExceptions, setModelExceptions] = useState<any[]>([]);
const [allExceptions, setAllExceptions] = useState<any[]>([]);
const [failureTableData, setFailureTableData] = useState<any[]>([]);
@ -558,6 +562,19 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
setModelMetrics(modelMetricsResponse.data);
setModelMetricsCategories(modelMetricsResponse.all_api_bases);
const streamingModelMetricsResponse = await streamingModelMetricsCall(
accessToken,
_initial_model_group,
dateValue.from?.toISOString(),
dateValue.to?.toISOString()
);
// Assuming modelMetricsResponse now contains the metric data for the specified model group
setStreamingModelMetrics(streamingModelMetricsResponse.data);
setStreamingModelMetricsCategories(
streamingModelMetricsResponse.all_api_bases
);
const modelExceptionsResponse = await modelExceptionsCall(
accessToken,
userID,
@ -804,6 +821,19 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
setModelMetrics(modelMetricsResponse.data);
setModelMetricsCategories(modelMetricsResponse.all_api_bases);
const streamingModelMetricsResponse = await streamingModelMetricsCall(
accessToken,
modelGroup,
startTime.toISOString(),
endTime.toISOString()
);
// Assuming modelMetricsResponse now contains the metric data for the specified model group
setStreamingModelMetrics(streamingModelMetricsResponse.data);
setStreamingModelMetricsCategories(
streamingModelMetricsResponse.all_api_bases
);
const modelExceptionsResponse = await modelExceptionsCall(
accessToken,
userID,
@ -1573,7 +1603,13 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
)}
</TabPanel>
<TabPanel>
<TimeToFirstToken />
<TimeToFirstToken
modelMetrics={streamingModelMetrics}
modelMetricsCategories={
streamingModelMetricsCategories
}
customTooltip={customTooltip}
/>
</TabPanel>
</TabPanels>
</TabGroup>

View file

@ -1,82 +1,27 @@
import React from "react";
import { LineChart } from "@tremor/react";
interface TimeToFirstTokenProps {
modelMetrics: any[];
modelMetricsCategories: string[];
customTooltip: any;
}
const chartdata = [
{
date: "Jan 22",
SolarPanels: 2890,
Inverters: 2338,
},
{
date: "Feb 22",
SolarPanels: 2756,
Inverters: 2103,
},
{
date: "Mar 22",
SolarPanels: 3322,
Inverters: 2194,
},
{
date: "Apr 22",
SolarPanels: 3470,
Inverters: 2108,
},
{
date: "May 22",
SolarPanels: 3475,
Inverters: 1812,
},
{
date: "Jun 22",
SolarPanels: 3129,
Inverters: 1726,
},
{
date: "Jul 22",
SolarPanels: 3490,
Inverters: 1982,
},
{
date: "Aug 22",
SolarPanels: 2903,
Inverters: 2012,
},
{
date: "Sep 22",
SolarPanels: 2643,
Inverters: 2342,
},
{
date: "Oct 22",
SolarPanels: 2837,
Inverters: 2473,
},
{
date: "Nov 22",
SolarPanels: 2954,
Inverters: 3848,
},
{
date: "Dec 22",
SolarPanels: 3239,
Inverters: 3736,
},
];
const dataFormatter = (number: number) =>
`$${Intl.NumberFormat("us").format(number).toString()}`;
const TimeToFirstToken = () => {
const TimeToFirstToken: React.FC<TimeToFirstTokenProps> = ({
modelMetrics,
modelMetricsCategories,
customTooltip,
}) => {
return (
<LineChart
className="h-80"
data={chartdata}
title="Time to First token (s)"
className="h-72"
data={modelMetrics}
index="date"
categories={["SolarPanels", "Inverters"]}
showLegend={false}
categories={modelMetricsCategories}
colors={["indigo", "rose"]}
valueFormatter={dataFormatter}
yAxisWidth={60}
onValueChange={(v) => console.log(v)}
connectNulls={true}
customTooltip={customTooltip}
/>
);
};

View file

@ -473,6 +473,45 @@ export const modelMetricsCall = async (
throw error;
}
};
export const streamingModelMetricsCall = async (
accessToken: String,
modelGroup: String | null,
startTime: String | undefined,
endTime: String | undefined
) => {
/**
* Get all models on proxy
*/
try {
let url = proxyBaseUrl
? `${proxyBaseUrl}/model/streaming_metrics`
: `/model/streaming_metrics`;
if (modelGroup) {
url = `${url}?_selected_model_group=${modelGroup}&startTime=${startTime}&endTime=${endTime}`;
}
// message.info("Requesting model data");
const response = await fetch(url, {
method: "GET",
headers: {
Authorization: `Bearer ${accessToken}`,
"Content-Type": "application/json",
},
});
if (!response.ok) {
const errorData = await response.text();
message.error(errorData, 10);
throw new Error("Network response was not ok");
}
const data = await response.json();
// message.info("Received model data");
return data;
// Handle success - you might want to update some state or UI based on the created key
} catch (error) {
console.error("Failed to create key:", error);
throw error;
}
};
export const modelMetricsSlowResponsesCall = async (
accessToken: String,