forked from phoenix/litellm-mirror
add everyting for docs
This commit is contained in:
parent
de45a738ee
commit
0fe8799f94
1015 changed files with 185353 additions and 0 deletions
144
docs/extras/integrations/text_embedding/xinference.ipynb
Normal file
144
docs/extras/integrations/text_embedding/xinference.ipynb
Normal file
|
@ -0,0 +1,144 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Xorbits inference (Xinference)\n",
|
||||
"\n",
|
||||
"This notebook goes over how to use Xinference embeddings within LangChain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Installation\n",
|
||||
"\n",
|
||||
"Install `Xinference` through PyPI:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install \"xinference[all]\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Deploy Xinference Locally or in a Distributed Cluster.\n",
|
||||
"\n",
|
||||
"For local deployment, run `xinference`. \n",
|
||||
"\n",
|
||||
"To deploy Xinference in a cluster, first start an Xinference supervisor using the `xinference-supervisor`. You can also use the option -p to specify the port and -H to specify the host. The default port is 9997.\n",
|
||||
"\n",
|
||||
"Then, start the Xinference workers using `xinference-worker` on each server you want to run them on. \n",
|
||||
"\n",
|
||||
"You can consult the README file from [Xinference](https://github.com/xorbitsai/inference) for more information.\n",
|
||||
"\n",
|
||||
"## Wrapper\n",
|
||||
"\n",
|
||||
"To use Xinference with LangChain, you need to first launch a model. You can use command line interface (CLI) to do so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Model uid: 915845ee-2a04-11ee-8ed4-d29396a3f064\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!xinference launch -n vicuna-v1.3 -f ggmlv3 -q q4_0"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"A model UID is returned for you to use. Now you can use Xinference embeddings with LangChain:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import XinferenceEmbeddings\n",
|
||||
"\n",
|
||||
"xinference = XinferenceEmbeddings(\n",
|
||||
" server_url=\"http://0.0.0.0:9997\",\n",
|
||||
" model_uid = \"915845ee-2a04-11ee-8ed4-d29396a3f064\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_result = xinference.embed_query(\"This is a test query\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"doc_result = xinference.embed_documents([\"text A\", \"text B\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Lastly, terminate the model when you do not need to use it:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!xinference terminate --model-uid \"915845ee-2a04-11ee-8ed4-d29396a3f064\""
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "base",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue