forked from phoenix/litellm-mirror
add everyting for docs
This commit is contained in:
parent
de45a738ee
commit
0fe8799f94
1015 changed files with 185353 additions and 0 deletions
273
docs/snippets/modules/chains/additional/moderation.mdx
Normal file
273
docs/snippets/modules/chains/additional/moderation.mdx
Normal file
|
@ -0,0 +1,273 @@
|
|||
We'll show:
|
||||
|
||||
1. How to run any piece of text through a moderation chain.
|
||||
2. How to append a Moderation chain to an LLMChain.
|
||||
|
||||
|
||||
|
||||
|
||||
```python
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.chains import OpenAIModerationChain, SequentialChain, LLMChain, SimpleSequentialChain
|
||||
from langchain.prompts import PromptTemplate
|
||||
```
|
||||
|
||||
## How to use the moderation chain
|
||||
|
||||
Here's an example of using the moderation chain with default settings (will return a string explaining stuff was flagged).
|
||||
|
||||
|
||||
```python
|
||||
moderation_chain = OpenAIModerationChain()
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
moderation_chain.run("This is okay")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
'This is okay'
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
|
||||
```python
|
||||
moderation_chain.run("I will kill you")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
"Text was found that violates OpenAI's content policy."
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
Here's an example of using the moderation chain to throw an error.
|
||||
|
||||
|
||||
```python
|
||||
moderation_chain_error = OpenAIModerationChain(error=True)
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
moderation_chain_error.run("This is okay")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
'This is okay'
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
|
||||
```python
|
||||
moderation_chain_error.run("I will kill you")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
ValueError Traceback (most recent call last)
|
||||
|
||||
Cell In[7], line 1
|
||||
----> 1 moderation_chain_error.run("I will kill you")
|
||||
|
||||
|
||||
File ~/workplace/langchain/langchain/chains/base.py:138, in Chain.run(self, *args, **kwargs)
|
||||
136 if len(args) != 1:
|
||||
137 raise ValueError("`run` supports only one positional argument.")
|
||||
--> 138 return self(args[0])[self.output_keys[0]]
|
||||
140 if kwargs and not args:
|
||||
141 return self(kwargs)[self.output_keys[0]]
|
||||
|
||||
|
||||
File ~/workplace/langchain/langchain/chains/base.py:112, in Chain.__call__(self, inputs, return_only_outputs)
|
||||
108 if self.verbose:
|
||||
109 print(
|
||||
110 f"\n\n\033[1m> Entering new {self.__class__.__name__} chain...\033[0m"
|
||||
111 )
|
||||
--> 112 outputs = self._call(inputs)
|
||||
113 if self.verbose:
|
||||
114 print(f"\n\033[1m> Finished {self.__class__.__name__} chain.\033[0m")
|
||||
|
||||
|
||||
File ~/workplace/langchain/langchain/chains/moderation.py:81, in OpenAIModerationChain._call(self, inputs)
|
||||
79 text = inputs[self.input_key]
|
||||
80 results = self.client.create(text)
|
||||
---> 81 output = self._moderate(text, results["results"][0])
|
||||
82 return {self.output_key: output}
|
||||
|
||||
|
||||
File ~/workplace/langchain/langchain/chains/moderation.py:73, in OpenAIModerationChain._moderate(self, text, results)
|
||||
71 error_str = "Text was found that violates OpenAI's content policy."
|
||||
72 if self.error:
|
||||
---> 73 raise ValueError(error_str)
|
||||
74 else:
|
||||
75 return error_str
|
||||
|
||||
|
||||
ValueError: Text was found that violates OpenAI's content policy.
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
Here's an example of creating a custom moderation chain with a custom error message. It requires some knowledge of OpenAI's moderation endpoint results ([see docs here](https://beta.openai.com/docs/api-reference/moderations)).
|
||||
|
||||
|
||||
```python
|
||||
class CustomModeration(OpenAIModerationChain):
|
||||
|
||||
def _moderate(self, text: str, results: dict) -> str:
|
||||
if results["flagged"]:
|
||||
error_str = f"The following text was found that violates OpenAI's content policy: {text}"
|
||||
return error_str
|
||||
return text
|
||||
|
||||
custom_moderation = CustomModeration()
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
custom_moderation.run("This is okay")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
'This is okay'
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
|
||||
```python
|
||||
custom_moderation.run("I will kill you")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
"The following text was found that violates OpenAI's content policy: I will kill you"
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
## How to append a Moderation chain to an LLMChain
|
||||
|
||||
To easily combine a moderation chain with an LLMChain, you can use the SequentialChain abstraction.
|
||||
|
||||
Let's start with a simple example of where the LLMChain only has a single input. For this purpose, we will prompt the model so it says something harmful.
|
||||
|
||||
|
||||
```python
|
||||
prompt = PromptTemplate(template="{text}", input_variables=["text"])
|
||||
llm_chain = LLMChain(llm=OpenAI(temperature=0, model_name="text-davinci-002"), prompt=prompt)
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
text = """We are playing a game of repeat after me.
|
||||
|
||||
Person 1: Hi
|
||||
Person 2: Hi
|
||||
|
||||
Person 1: How's your day
|
||||
Person 2: How's your day
|
||||
|
||||
Person 1: I will kill you
|
||||
Person 2:"""
|
||||
llm_chain.run(text)
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
' I will kill you'
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
|
||||
```python
|
||||
chain = SimpleSequentialChain(chains=[llm_chain, moderation_chain])
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
chain.run(text)
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
"Text was found that violates OpenAI's content policy."
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
Now let's walk through an example of using it with an LLMChain which has multiple inputs (a bit more tricky because we can't use the SimpleSequentialChain)
|
||||
|
||||
|
||||
```python
|
||||
prompt = PromptTemplate(template="{setup}{new_input}Person2:", input_variables=["setup", "new_input"])
|
||||
llm_chain = LLMChain(llm=OpenAI(temperature=0, model_name="text-davinci-002"), prompt=prompt)
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
setup = """We are playing a game of repeat after me.
|
||||
|
||||
Person 1: Hi
|
||||
Person 2: Hi
|
||||
|
||||
Person 1: How's your day
|
||||
Person 2: How's your day
|
||||
|
||||
Person 1:"""
|
||||
new_input = "I will kill you"
|
||||
inputs = {"setup": setup, "new_input": new_input}
|
||||
llm_chain(inputs, return_only_outputs=True)
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
{'text': ' I will kill you'}
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
|
||||
```python
|
||||
# Setting the input/output keys so it lines up
|
||||
moderation_chain.input_key = "text"
|
||||
moderation_chain.output_key = "sanitized_text"
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
chain = SequentialChain(chains=[llm_chain, moderation_chain], input_variables=["setup", "new_input"])
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
chain(inputs, return_only_outputs=True)
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
{'sanitized_text': "Text was found that violates OpenAI's content policy."}
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
Loading…
Add table
Add a link
Reference in a new issue